

AFML-TR-78-120

DDC FILE COPY,

ANALYSIS OF AXISYMMETRIC SHEET-METAL FORMING BY THE RIGID-PLASTIC, FINITE-ELEMENT **METHOD**

MECHANICAL ENGINEERING UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA

SEPTEMBER 1978

TECHNICAL REPORT AFML-TR-78-120 Technical Report May 1977 - May 1978

Approved for public release; distribution unlimited.

AIR FORCE MATERIALS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

HAROLD L. GEGEL Project Engineer

FOR THE COMMANDER

NORMAN M. GEYER

Acting Chief

Processing and High Temperature Materials Branch

Metals and Ceramics Division

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/6 April 1979 - 315

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE RECHTIENT'S CATALOG NUMBER ERORT NUMBER AFML-TR-78-120 TYPE OF REPORT & PERIOD COVERED TLE (and Subtitle) Technical Repet. Jung 1977 - Jung 1978 ANALYSIS OF AXISYMMETRIC SHEET-METAL FORMING PROCESSES BY THE RIGID-PLASTIC, FINITE-6/ PERFORMING ORG. REPORT NUMBER CONTRACT OR GRANT NUMBER(*) AUTHOR(s) F33615-77-C-5111 Miles J. H. Kim, S. I. Oh and Shiro Kobayashi PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS PERFORMING ORGANIZATION NAME AND ADDRESS Department of Mechanical Engineering 62102 2418 / University of California Berkeley, California 94720 241804 24180406 11. CONTROLLING OFFICE HAME AND ADDRESS September 1978 Air Force Materials Laboratory Air Force Systems Command Wright-Patterson Air Force Base, Ohio 45433 141 15. SECURITY CLASS. (of this report) 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release: distribution unlimited. 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Sheet metal forming, mechanics, finite element method, punch stretching, hydraulic bulge, cup drawing. Rigid-plastic analysis. 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report describes the development of a finite-element model for analyzing sheet-metal forming processes. Materials are assumed to be rigid-plastis with the view that the usefulness of an analysis method depends largely upon solution accuracy and computation efficiency. First, the variational formulation applicable to sheet-metal forming is described by considering solution uniqueness and the (over)

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102 LF 014 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

effect of geometry change involved in the forming processes. From this variational formulation, a finite-element process model based on the membrane theory is developed. Then, three basic sheet-metal forming processes, namely, the bulging of a sheet subject to hydrostatic pressure, the stretching of a sheet with a hemispherical head punch, and deep drawing of a sheet with a hemispherical head punch, are solved. The solutions arrived at by the rigid-plastic, finite-element method are compared with existing numerical solutions and the experimental data. The agreement is generally excellent and it is concluded that the rigid-plastic, finite-element method is efficient for analyzing sheet-metal forming problems with reasonable accuracy.

TABLE OF CONTENTS

SECTION	F	AGE
I	INTRODUCTION	1
II	BACKGROUND	3
	1. Uniqueness	3 7
III	FORMULATION	13
	1. Variational formulation	13 14 17 22
IV	HYDROSTATIC BULGING	23
	1. Introduction	23 28 29
v	STRETCHING OF A SHEET WITH HEMISPHERICAL PUNCH	37
	1. Introduction	37 40 46
VI	DEEP DRAWING OF A SHEET WITH HEMISPHERICAL PUNCH	68
	1. Introduction	68 69 72
VII	SUMMARY AND DISCUSSION	79
	Appendix A: PROGRAM FOR THE INITIAL GUESS FOR HYDROSTATIC BULGING ANALYSIS	83
	Appendix B: PROGRAM FOR THE ANALYSIS OF HYDROSTATIC BULGING	86
	Appendix C: PROGRAM FOR THE ANALYSIS OF PUNCH STRETCHING.	100
	Appendix D: PROGRAM FOR THE ANALYSIS OF DEEP DRAWING AND PUNCH STRETCHING WITH ROUND DIE CORNER	118
	REFERENCES	138

LIST OF ILLUSTRATIONS

FIGUR	E		PAGE
1	Approximation of the sheet geometry into a series of conical frustra		20
2	Schematic view of hydrostatic bulging		27
3	Hydrostatic pressure vs. polar thickness strain		30
4	(a) and (b) Distribution of strains		31
5	Distribution of stresses		32
6	Bulge profile		32
7	Polar height vs. pressure		34
8	Bulge profile		35
9	(a) Circumferential strain distribution		36
	(b) Thickness strain distribution		36
10	Schematic view or the stretching of a sheet with a hemispherical head punch	•	38
11	Geometrical requirement for the node on the contact region		41
12	Punch head vs. punch travel		48
13	Thickness strain distribution		49
14	Circumferential strain distribution		50
15	Thickness strain distribution		50
16	Effect of step size		52
17	Effect of mesh size		52
18	Distribution of thickness strain when die profile is considered		54
19	Distribution of circumferential strain when die profile is considered		54

FIGURE		PAGE
20	Comparison of the numerical solution with the experimental data for circumferential strain distribution	. 56
21	Comparison with the experiment for thickness strain distribution	. 56
22	Stress-strain curve for al. 2036-T4	. 58
23	Experimental (Johnson's wax as lubricant) and theoretical (μ = 0.2) strain distributions for punch size (r_p/r_0 = 0.75/0.80). (a) Thickness strains; (b) Circumferential strains	. 61
24	Experimental (Johnson's wax as lubricant) and theoretical $(\mu$ = 0.2) strain distributions for punch size $(r_p/r_0$ = 0.45/0.80). (a) Thickness strains; (b) Circumferential strains	. 62
25	Comparison of theoretical thickness strain distributions using (1) the parabolic workhardening law and (2) the Voce equation for punch size $(r_p/r_0 = 0.75/0.80)$ with (a) $\mu = 0$ and (b) $\mu = 0.2 \dots \dots \dots \dots \dots \dots \dots \dots \dots$. 64
26	Comparison of theoretical thickness strain distributions using (1) the parabolic workhardening law and (2) the Voce equation for punch size $(r_p/r_0=0.45/0.80)$ with (a) $\mu=0$ and (b) $\mu=0.2$. 65
27	Comparison of theoretical load displacement curves using (1) the parabolic workhardening law and (2) the Voce equation for μ = 0	. 66
28	Comparison of theoretical load displacement curves using (1) the parabolic workhardening law and (2) the Voce equation for μ = 0.2	. 67
29	Schematic view of deep drawing of a sheet with a hemispherical head punch	. 70
30	Distribution of thickness strain for μ_p = 0.04, μ_d = 0.04 .	. 74
31	Distribution of circumferential strain for μ_p = 0.04, μ_d = 0.04	. 75
32	Distribution of thickness strain for μ_p = 0.1, μ_d = 0.04	. 76
33	Distribution of circumferential strain for μ_p = 0.1, μ_d = 0.04	. 77
34	Punch load vs. punch depth	. 77

SECTION I

INTRODUCTION

The metal forming processes basically involve large amounts of elastic deformation, and, due to the complexities of plasticity, the exact analysis of a process is infeasible in most of the cases. Thus, a number of approximate methods have been suggested, with varying degrees of approximation and idealization. Among these, techniques using the finite-element method take precedence because of their flexibility, ability to obtain a detailed solution, and the inherent proximity of their solutions to the exact one.

A prime objective of mathematical analysis of metalworking processes is to provide necessary information for proper design and control of these processes. Therefore, the method of analysis must be capable of determining the effects of various parameters on metal flow characteristics. Furthermore, the computation efficiency, as well as solution accuracy, is an important consideration for the method to be useful in analyzing metalworking problems.

With this viewpoint in mind, successful efforts have been carried out in analyzing various deformation processes, such as compression, heading, piercing, extrusion and drawing by the rigid-plastic, finite-element method (matrix method) [1]-[7].

The formulation of the matrix method, however, cannot be extended to the sheet-metal forming analysis due to the following reasons:

(1) The classical variational formulation which is the basis of the matrix method does not necessarily determine a unique deformation mode. Physically, there is no inherent indeterminacy for workhardening solids, but this indeterminacy is due rather to the fact

- that the workhardening rate is not included in the mathematical formulation of the classical variational principle.
- (2) The kinematic assumption in the matrix method is not longer valid for the sheet-metal forming process. As long as bulk deformation or in-plane stretching are concerned, this kinematic assumption that the magnitude of the rate of rotation is negligible compared to the strain rate does not deviate much from the real situation and yields solutions consistent with reality. Geometric nonlinearity in sheet-metal forming, however, invalidates such a simplification.

The objective of the present investigation is, therefore, to develop and establish a finite-element method for sheet-metal forming processes.

In Section II various forms of variational formulations are reviewed in the light of uniqueness and geometry change which leads to a realization of the necessity of new formulations. In Section III a new formulation is obtained and the development of the finite-element model from it is described. With the particular example of sheet-metal forming processes in mind, the idealization of plane stress state and membrane theory is implemented. Furthermore, the development is confined to the case of axisymmetrical problems.

To establish the validity of the proposed method, three basic sheetmetal forming processes are analyzed and the solutions are compared with
other available experimental data and numerical solutions. Hydrostatic
bulging is treated in Section IV. Punch stretching with a hemispherical
punch is discussed in Section V. To make the problem tractable, one moving
contact boundary is considered first by neglecting die profile; then the
analysis is extended to include two moving boundaries. In Section VI deep
drawing with a hemispherical punch is solved.

1. Uniqueness

We consider the quasistatic deformation of a rigid-plastic solid. On a portion S_V of the surface S of this body are prescribed given velocities, while the remainder S_T of the surface S is subjected to given surface tractions T_i . Assuming that these surface velocities and tractions are such that the entire body is in a state of plastic flow, we want to determine the stresses σ_{ij} and strain rates ε_{ij} throughout the body.

The conventional formulation of variational principle for this problem is that among all kinematically admissible strain rate fields $\dot{\epsilon}^{\star}_{ij}$, the actual one minimizes the expression (Hill [8]),

$$\pi_1 = \int \tilde{\sigma} \tilde{\epsilon}^* dv - \int_{S_T} T_i v_i^* dS, \qquad (1)$$

where $\bar{\sigma}$ is the effective stress, $\dot{\bar{\epsilon}}$ is the effective strain rate defined by

$$\bar{\sigma} = \sqrt{\frac{3}{2}} \sqrt{\sigma_{ij}^! \sigma_{ij}^!},$$

$$\dot{\tilde{\varepsilon}} = \sqrt{\frac{2}{3}} \sqrt{\tilde{\varepsilon}_{ij} \tilde{\varepsilon}_{ij}}$$

respectively, where $\sigma_{ij}^!$ is the deviatoric component of $\sigma_{ij}^!$. Here a strain rate field $\hat{\epsilon}_{ij}^*$, defined throughout the body under consideration, is called kinematically admissible if it is derivable from a velocity field v_i^* which satisfies the condition of incompressibility $v_{i,i}^* = 0^{\dagger}$ throughout the body

$$v_{i,i} = \frac{\partial v_i}{\partial x_i}$$

The comma denotes the differentiation with respect to coordinates, e.g.,

and the boundary conditions on S_v . The variational principle in this form has been successfully applied to the analysis of metal forming problems, such as extrusion [6]. As was found out later, and we will discuss this shortly, the success is related to the type of boundary conditions prescribed on the surface of the body undergoing deformation. In general, with the variational formulation of π_1 in Eq. (1), there is a question regarding uniqueness of deformation mode even though the stress field is uniquely determined [8], [9].

Consider an incipient flow in a rigid-plastic solid, workhardening or perfect plastic, governed by the following partial differential equations which are, of course, dual to the variational formulation π_1 . With respect to Cartesian reference frame \mathbf{x}_i the following equations hold:

Equilibrium equations

$$\sigma_{ij,j} = 0$$
 in the absence of body force (2a)

Strain rate-velocity relationship

$$\dot{\varepsilon}_{ij} = \frac{1}{2} (v_{i,j} + v_{j,i}) \tag{2b}$$

Constitutive equation

$$\mu\sigma_{ij}^{\prime} = \hat{\epsilon}_{ij}^{\prime}$$
, μ being an arbitrary constant (2c)

Yield criterion

$$\bar{\sigma} = \sqrt{\frac{3}{2}} \sqrt{\sigma_{ij}^! \sigma_{ij}^!} = H(\bar{\epsilon}), \text{ where } \bar{\epsilon} \text{ is the effective strain defined}$$
 (2d) by
$$\bar{\epsilon} = \int d\bar{\epsilon} \text{ if } d\bar{\epsilon} = \sqrt{\frac{2}{3}} \sqrt{d\epsilon_{ij}^! d\epsilon_{ij}^!}$$

Boundary conditions

$$n_j \sigma_{ij} = \hat{T}_i$$
 on S_T , (2e)
 $v_i = \hat{v}_i$ on S_V , where n_j is the unit normal vector to the surface of the body; \hat{T}_i and \hat{v}_i are prescribed values

Suppose that $(\sigma_{i}^{(1)}, \epsilon_{ij}^{(1)})$ is the solution to this boundary value problem. Construct a different set of stress fields and strain rate fields $(\sigma_{ij}^{(2)}, \epsilon_{ij}^{(2)})$, where $\sigma_{ij}^{(2)} = \sigma_{ij}^{(1)}$, $\epsilon_{ij}^{(2)} = C \epsilon_{ij}^{(1)}$. C is any arbitrary factor and may vary from point to point throughout the body. Then, it is easily shown that this set $(\sigma_{ij}^{(2)}, \epsilon_{ij}^{(2)})$ satisfies all the governing equations except for the boundary conditions on S_v . On S_v the velocity integrated from $\epsilon_{ij}^{(2)}$ should coincide with the prescribed value \hat{v}_i . Since strain rate-velocity relation is linear, integrating $\epsilon_{ij}^{(2)}$ would yield $C \hat{v}_i$ if $\epsilon_{ij}^{(1)}$ is integrated to give \hat{v}_i , and therefore C must be unity on S_v . With this and the compatibility requirement the deformation mode may or may not be uniquely determined. One example of a well-established unique kinematic mode is in the plane-strain problem. In the plane-strain condition, unless one family of the characteristics is straight, the governing equation of the velocity field becomes the telegraphy equation which is hyperbolic and, therefore, the solution is uniquely determined if the boundary curve is not along a characteristic.

It can be readily shown that under certain boundary conditions the set $(\sigma_{ij}^{(1)}, C\epsilon_{ij}^{(1)})$ also satisfies the boundary conditions on S_v and therefore the deformation mode is clearly not unique. The following is a partial list of such boundary conditions.

- (1) $S_{y} = 0$, i.e., all the boundaries are traction boundaries;
- (2) $\hat{v}_{i} = 0 \text{ on } S_{v};$
- (3) On S_V only the ratio between the velocity components are prescribed, e.g., $\frac{\hat{v}_i}{\hat{v}_i} = \alpha$;
- (4) Mixed boundary condition; e.g., a normal component of \hat{v}_i and a tangential component of \hat{T}_i are prescribed over the surface, or vice versa. In this case, the additional condition of whether all the characteristics meet on a curve in the region should be checked [10].

Concrete examples are (1) the expansion of spherical shells [11] or cylindrical shells [12] under internal pressure, and (4) the indentation of a semi-infinite body by a flat punch under the plane-strain condition [13], torsion of a prismatic bar [10]. Among sheet-metal forming processes, hydrostatic bulging belongs to case (2) and punch stretching to case (4) or (3).

Note that the physical meaning of these boundary conditions is that the plastic flow is unconstrained and all or part of the body is free to deform. Mathematically, this nonuniqueness is due to the fact that the Levy-Mises theory, implied in the variational formulation $\boldsymbol{\pi}_1$ and also appearing in the differential equations (2c), does not include the "viscosity effect" (in Prager's terminology [9]) and, therefore, this indeterminacy would be resolved if the workhardening effect is taken into account. In fact, for the workhardening solid there is no inherent indeterminacy in general; the apparent nonuniqueness is due simply to an inadequate formulation of the problem. In proper formulation, traction rate \dot{T}_i must be specified on S_T , and then from an infinite number of kinematically possible modes the actual mode can be singled out by the additional requirement that there must exist an equilibrium distribution of stress rate compatible with the implied rate of hardening everywhere in the body and with the given traction rate $\dot{\mathbf{T}}_i$ on \mathbf{S}_T . Besides, the workhardening effect is explicitly brought into the constitutive equation in the form of

$$h\dot{\varepsilon}_{ij} = \frac{\sigma_{ij}^{!}}{\bar{\sigma}}\dot{\bar{\sigma}}$$
 (3)

where $\dot{\bar{\sigma}}$ is the time rate of $\bar{\sigma}$, h the workhardening effect of the material being equal to $\frac{2}{3} \frac{d\bar{\sigma}}{d\bar{\epsilon}}$. It can be shown that the constitute equation (3) can always be reduced to the constitutive equation (2c), but not necessarily

vice versa. Therefore, for a perfectly plastic solid, specifying the traction rate does not resolve the indeterminacy. Hill, then, showed that among all variational modes compatible with the boundary conditions for \hat{v}_i on S_v and the existing stress distribution σ_{ij} , the actual mode minimizes the following expression when geometry changes are neglected (Hill [8]):

$$\pi_2 = \frac{1}{2} \int h(\dot{\epsilon}_{ij}^*)^2 dv - \int_{S_T} \dot{T}_i v_i dS.$$
 (4)

Note that the virtual mode $\hat{\epsilon}_{ij}^*$ in π_2 should be normal to the yield surface at the existing stress point in the stress space due to the compatibility requirement with existing stress distributions. For statically indeterminate problems, however, there is a coupling between stress field and strain rate field and we have to solve these two sets of variables simultaneously.

2. Geometry change

When the effect of geometry change cannot be neglected during deformation, it is necessary to reconsider the specification of the loading on \mathbf{S}_T and the stresses since the changes in shape and area of surface elements are themselves unknown.

Let X_i be the position vector in a Cartesian reference frame at time t and after an infinitesimal time δt , x_i be the position. Let us call the configuration at time t undeformed configuration and the one at time $t+\delta t$ deformed configuration. When an actual force dP_i acts upon the area element da at time $t+\delta t$, there are various ways of reckoning this force.

First, the actual force $\ensuremath{\text{dP}}_i$ is referred to the deformed configuration, or

$$dP_{i} = n_{i}\sigma_{ij}da, (5a)$$

where n_j is the unit normal vector to the surface element of area da in a deformed configuration. The stress tensor σ_{ij} defined in this manner is called Cauchy stress tensor, or sometimes, true stress tensor.

Second, the actual force dP_{i} is referred to the undeformed configuration, or

$$dP_{i} = N_{j}S_{ij}dA, \qquad (5b)$$

where N_j is the unit normal vector to the surface element of area dA in an undeformed configuration. The stress tensor S_{ij} defined in this manner is called the first kind of Kirchhoff stress tensor, or sometimes, nominal stress tensor. This tensor has the disadvantage of not being symmetric and therefore awkward to use in a constitutive equation with a symmetric strain tensor. Nonetheless, sometimes this stress tensor is used with nonsymmetric velocity gradients [14].

Third, to obtain a stress tensor, which is symmetric and referred to the undeformed configuration, we proceed as follows. Instead of the actual force dP_i , consider a force $\mathrm{d\tilde{P}}_i$ related to the force dP_0 in the same way that a material vector dX_i is related by the deformation to the corresponding vector dx_i . That is,

$$d\tilde{P}_{i} = \frac{\partial X_{i}}{\partial x_{j}} dP_{j}.$$
 (5c)

Refer this pseudo-force $d\tilde{P}_i$ to the undeformed configuration to define the second kind of Kirchhoff stress tensor τ_{ij} :

$$d\tilde{P}_{i} = N_{j} \tau_{ij} dA.$$
 (5d)

Using the expression relating the area change of the same element during deformation [15],

$$n_{i} da = \frac{\rho_{0}}{\rho} N_{j} \frac{\partial X_{j}}{\partial x_{i}} dA, \qquad (6)$$

where ρ_0 and ρ are densities of the volume element before and after the deformation, the relationship between different stress measures is obtained. From Eqs. (6), (5a), and (5b),

$$dP_{i} = n_{j}\sigma_{ij}da = \sigma_{ij}\frac{\rho_{0}}{\rho}N_{k}\frac{\partial X_{k}}{\partial x_{j}}dA$$

$$= N_{j}S_{ij}dA$$
(7a)

or

$$S_{ij} = \frac{\rho_0}{\rho} \frac{\partial X_j}{\partial x_k} \sigma_{ik}$$
 (7b)

and from Eqs. (6), (5a), (5c), and (5d),

$$\tau_{ij} = \frac{\rho_0}{\rho} \frac{\partial X_i}{\partial x_k} \sigma_{kr} \frac{\partial X_j}{\partial x_r}.$$
 (7c)

All these different stress tensors become exactly the same when we bring the deformed configurations to the undeformed configurations and make them identical in the limit. Stress rates, however, are not the same. Let δu_i be the increment of displacement of the element; then

$$\delta S_{ij} = \delta \sigma_{ij} - \sigma_{kj} \frac{\partial}{\partial x_k} \delta u_i$$
 to the first order,

neglecting plastic volume change. Or, in terms of rates,

$$\dot{S}_{ij} = \dot{\sigma}_{ij} - \sigma_{kj} v_{i,k} . \tag{8}$$

Let us compare the magnitude of the second term with that of the first term in the right-hand side of Eq. (8). Since

$$\frac{\partial v_{i}}{\partial x_{k}} = \frac{1}{2} \left(\frac{\partial v_{i}}{\partial x_{k}} + \frac{\partial v_{k}}{\partial x_{i}} \right) + \frac{1}{2} \left(\frac{\partial v_{i}}{\partial x_{k}} - \frac{\partial v_{k}}{\partial x_{i}} \right)$$

$$= \frac{1}{2} \dot{\varepsilon}_{ik} + \frac{1}{2} \dot{\omega}_{ik}, \tag{9a}$$

where $\dot{\epsilon}_{ik}$ is the rate of deformation and $\dot{\omega}_{ik}$ the rate of rotation. Then

$$\sigma_{kj} \frac{\partial v_{i}}{\partial x_{k}} = \frac{1}{2} \sigma_{kj} \dot{\varepsilon}_{ik} + \frac{1}{2} \sigma_{kj} \dot{\omega}_{ik}. \tag{9b}$$

Now, if workhardening characteristics are given by the relation

$$\bar{\sigma} = H(\bar{\epsilon}),$$
 (10a)

then

$$H' = \frac{d\bar{\sigma}}{d\bar{\epsilon}}$$
or
$$d\bar{\epsilon} = \frac{d\bar{\sigma}}{H'} .$$
(10b)

For an order of magnitude calculation we can write approximately

$$\dot{\varepsilon}_{ik} = \frac{\dot{\sigma}_{ik}}{H'} \tag{10c}$$

or

$$\sigma_{kj} \dot{\varepsilon}_{ik} = \frac{\sigma_{kj} \dot{\sigma}_{ik}}{H'} . \tag{10d}$$

Then, from Eqs. (9b) and (10d), Eq. (8) becomes

$$\dot{S}_{ij} = \dot{\sigma}_{ij} \left(1 - \frac{\sigma_{ij}}{H'} \right) + \frac{1}{2} \sigma_{kj} \dot{\omega}_{ik}. \tag{11}$$

From Eq. (11) we conclude that if the order of the rate of rotation $\mathring{\omega}_{ij}$ is the same as or less than the order of strain rate $\mathring{\epsilon}_{ij}$, and if the workhardening rate H' is greater than the stress level, then $\mathring{s}_{ij} = \mathring{\sigma}_{ij}$. Otherwise, geometry change should not be neglected.

It could be shown [16] that when geometry change is taken into account, the condition for continuing equilibrium requires that

$$\frac{\partial S_{ij}}{\partial x_i} = 0$$
 in the absence of body force.

Using this condition, Hill subsequently derived the following variational formulation [17]:

$$\pi_{3} = \frac{1}{2} \int h(\hat{\epsilon}_{ij}^{*})^{2} dv - \frac{1}{2} \int \sigma_{kj} v_{i,k}^{*} v_{j,i}^{*} v dv - \int_{S_{T}} T_{i} v_{i}^{*} dS.$$
 (12)

Formulation π_3 follows essentially the same line of formulation π_2 except that now geometry change is considered. In the formulation π_3 , as well as in π_2 , virtual mode must be compatible with the existing stress distribution and the boundary condition on S_V . As has been discussed earlier for statically indeterminate problems this is not an appropriate formulation.

Summarizing the development so far, the kinematic mode in sheet-metal forming of a rigid-plastic solid is not uniquely determined by considering the first-order expansion of the potential alone. Consideration up to second-order expansion of the potential, or equivalent consideration of workhardening rate in a physical sense, needs stress rate terms explicitly in the variational formulation. When geometry change cannot be neglected, these stress rate- are related to stress distribution, which is not known for statically indeterminate problems. The approach of viewing the deformation

as determining the incipient flow by assuming the deformed configuration coincident with the undeformed configuration clearly does not lead to a workable variational formulation for sheet-metal forming of a rigid-plastic solid. In this respect, it is intended to develop an appropriate variational formulation in the next section.

SECTION III

FINITE-ELEMENT FORMULATION

1. Variational formulation

Let x_i be the position vector in a Cartesian frame of reference at time t, the moment under consideration. Let σ_{ij} be the true stress at time t and σ_{ij} + $d\sigma_{ij}$ the true stress in the same material element after an infinitesimal time dt, both tensors being associated with the same Cartesian axes. Let ds_{ij} be the increment in nominal stress in the same element in time dt, based on the dimensions at time t. Let du_i be the increment of displacement of the element, then

$$ds_{ij} = d\sigma_{ij} - \sigma_j \frac{\partial (du_i)}{\partial x_k}.$$
 (13)

Requiring continuing equilibrium of stresses, the virtual work principle gives

$$\int_{V} \left[\sigma_{ij} + d\sigma_{ij} - \sigma_{kj} \frac{\partial (du_{i})}{\partial x_{k}} \right] \delta \left(\frac{\partial (du_{j})}{\partial x_{i}} \right) dV = \int_{S_{F}} (E_{j} + dF_{j}) \delta (du_{j}) ds,$$
(14)

where $T_j = \ell_i \sigma_{ij}$ and $dT_j = \ell_i ds_{ij}$, ℓ_i being the unit normal to the surface at time t. The variational formulation is obtained from Eq. (14) as follows:

$$\begin{split} \delta \varphi &= \delta \biggl\{ \int_{V} \sigma_{\mathbf{i}\mathbf{j}} d\varepsilon_{\mathbf{i}\mathbf{j}} \ dV + \int_{V} \frac{1}{2} h d\varepsilon_{\mathbf{i}\mathbf{j}}^{2} \ dV - \int_{V} \frac{1}{2} \sigma_{\mathbf{k}\mathbf{j}} \frac{\partial (du_{\mathbf{i}})}{\partial x_{\mathbf{k}}} \frac{\partial (du_{\mathbf{j}})}{\partial x_{\mathbf{i}}} \ dV \\ &- \int_{S_{\mathbf{F}}} (T_{\mathbf{j}} + dT_{\mathbf{j}}) du_{\mathbf{j}} \ ds \biggr\} = 0, \end{split}$$

where

$$d\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial (du_i)}{\partial x_j} + \frac{\partial (du_j)}{\partial x_i} \right)$$
 (15)

and $h=\frac{2}{3}$ H', with H' the slope of the stress and strain curve. The first three terms of the functional ϕ represent the energy dissipated during the time dt up to the second order. If it is assumed that the principal axes of true strain-rate keep the same directions in the element and the principal components of strain-rate maintain the constant ratios during the time dt, the dissipated energy can be expressed directly [18] as

$$\sum (\sigma_{p} dE_{p} + \frac{1}{2} h dE_{p}^{2})$$

per unit volume, where dE_p is the logarithmic strain components. The final form of the functional becomes

$$\phi = \int_{V} \bar{\sigma} d\bar{E} \ dV + \frac{1}{2} \int H'(d\bar{E})^{2} \ dV - \int_{S_{E}} (T_{j} + dT_{j}) \ du_{j} \ dS, \tag{16}$$

where dE is defined by

$$d\tilde{E} = \sqrt{\frac{2}{3} \left[(dE_p)^2 \right]}$$

2. Theory of the finite-element method

An important step in finite-element modeling is obtaining approximate state equations in a region. The weighted residual method derives the state equations directly from the governing differential equations. Let us write the governing differential equation as

$$Lu - f = 0, (17)$$

where L is the differential operator, f is the known function, and u is the solution. With the trial solution u^* , Eq. (17) is not satisfied, but there remains an error or residual R such that

$$R = Lu^* - f. \tag{18}$$

This residual is multiplied by weight function w and integrated over the domain and the state equations are derived from the condition that this integral vanishes with a given choice of weight function w:

$$\int wR \ dv = 0. \tag{19}$$

One well-known method among weighted residual methods is Galerkin's approach.

A more frequently used approach is the derivation from a variational principle which is a dual expression of the governing differential equation. Assume that a functional Φ , which is equivalent to the differential equation, has been established. Let a continuum be divided into a finite collection M of subdomains called elements interconnected at a finite number of nodes N. If it is true that the total functional is equal to the sum of the contributions of each element $\Phi^{(m)}$, then we may write as follows:

$$\Phi = \sum_{m=1}^{M} \Phi^{(m)}(u). \tag{20}$$

In each element let us approximate the solution with a linear combination of trial functions \boldsymbol{v}_i such that

$$u \simeq \sum \alpha_i v_i$$
 (21)

holds, where α_i are unknown coefficients to be determined later. By substituting Eq. (21) into Eq. (20), we have

$$\Phi = \sum_{m=1}^{M} \varphi^{(m)}(\alpha_{i}v_{i})$$

$$= \sum_{m=1}^{M} \varphi^{(m)}(\alpha_{i}) \quad \text{since } v_{i} \text{'s are known}$$

$$= \varphi(\alpha_{i}).$$
(22)

The original Φ of u is now discretized with a function ϕ of parameters α_i , and the initial variational problem reduces to determining the α_i that minimizes ϕ . The minimization of ϕ with respect to α_i may be written as

$$\delta \Phi = \frac{\delta \Phi}{\partial \alpha_i} \delta \alpha_i = 0, \tag{23}$$

where δ denotes the first variation. Since α_i 's are independent, expression (23) is equivalent to a set of simultaneous equations,

$$\frac{\partial \mathbf{\Phi}}{\partial \alpha_{\mathbf{i}}} = 0. \tag{24}$$

This is, in fact, the classical Ritz technique. It is the choice of trial functions that makes the finite-element method different from the Ritz method and renders it successful; they are piecewise polynomials. Bsides, the coefficients α_i , called nodal values in the finite-element literature, do have a definite physical meaning, such as displacement or velocity.

The trial function $\mathbf{v_i}$ must satisfy certain requirements to enable convergence as the subdivision into ever smaller elements is attempted. First, as the element size decreases, the functions in the integral must tend to be single-valued and well behaved in physical problems. This is called the "completeness" requirement and is satisfied if the trial function is of class $\mathbf{c^p}$ when \mathbf{p} is the highest order in the integrand of the

functional. Second, the validity of the summation implied in Eq. (20) must be preserved. This is called the "compatibility" requirement and is satisfied if v_i is of class c^{p-1} [19], [20]. When admissible trial functions are used, the functional converges monotonically with an increasing number of elements (or decreasing size) at a rate proportional to h^2 where h is a characteristic element dimension.

3. Modeling of axisymmetric problems

The general outline of the finite-element modeling stated above will be expanded in detail for the case of axisymmetric thin shells subject to axisymmetric loading. This particular problem is of interest since some basic sheet-metal forming processes belong to this category. When the ratio of thickness to the radius of curvature is sufficiently small, bending moment and shearing forces may be neglected without serious error and the membrane theory may be justified [21]. Moreover, the state of stress can be treated as an approximate plane so long as $\frac{dt}{ds}$ is small compared with unity, where t is the local thickness and s is the distance in any direction parallel to the surface. We now may rewrite Φ with the substitution of t dA = dv to Eq. (16):

$$\Phi = \int \bar{\sigma}(d\bar{E})t \ dA + \frac{1}{2} \int H'(d\bar{E})^2(t \ dA) - \int (T + dT)du_j \ dA$$
 (25)

for the unit included angle of the element, where A is the area of the element and t is the sheet thickness.

From the symmetry of the problem it is easily shown that the circumferential direction and the meridian direction are the principal directions and if the friction between the shell and the external agent is negligible, the thickness direction will be the third principal direction. Within the order of approximation taken in the formulation, the logarithmic strain increment may be used as the strain increment measure. Then the definitions of strain increments are

$$dE = \begin{cases} dE_1 \\ dE_2 \end{cases} = \begin{cases} dE_r \\ dE_\theta \end{cases} = \begin{cases} \ln \frac{s}{s_0} \\ \ln \frac{r}{r_0} \end{cases} , \qquad (26)$$

if, during an incremental deformation, an element of undeformed length \mathbf{s}_0 is stretched to the length s and the point currently at the radial distance \mathbf{r}_0 moves to the deformed radial location r. Subscripts r, θ refer to the meridian and the circumferential direction, respectively.

To bring the model closer to reality in the present investigation, normal anisotropy is included and the corresponding stress-strain increment relation is obtained, using Hill's criterion [13], as

$$\frac{dE_{\mathbf{r}}}{(1+R)\sigma_{\mathbf{r}}-R\sigma_{\theta}} = \frac{dE_{\theta}}{(1+R)\sigma_{\theta}-R\sigma_{\mathbf{r}}} = \frac{d\bar{E}}{(1+R)\bar{\sigma}},$$
(27)

where R is the planar isotropy parameter which is the ratio of width strain to the thickness strain in uniaxial tension. The effective stress and the effective strain are defined † as

$$\bar{\sigma} = \sqrt{\sigma_{\theta}^2 - \frac{2R}{1 + R} \sigma_{\mathbf{r}} \sigma_{\theta} + \sigma_{\mathbf{r}}^2} , \qquad (28a)$$

$$d\bar{E} = \frac{1 + R}{\sqrt{1 + 2R}} \sqrt{dE_{\mathbf{r}}^2 + \frac{2R}{1 + R}} dE_{\theta} dE_{\mathbf{r}} + dE_{\theta}^2.$$
 (28b)

Note that H' = $\frac{d\bar{\sigma}}{d\bar{E}}$ must be consistent with these definitions.

The effective strain, dE, may be written in matrix form as

$$d\bar{E} = \sqrt{\frac{2}{3}} \left[d\underline{E}^{T} \underline{D} \ dE \right]^{1/2}, \tag{29a}$$

where

$$D = \frac{3(1+R)}{2(1+2R)} \begin{vmatrix} 1+R & R \\ R & 1+R \end{vmatrix}.$$
 (29b)

The sheet geometry is approximated by a series of conical frustra, as shown in Fig. 1. Linear trial functions, or shape functions, as they are often called in the finite-element literature, are enough since the integrand in the functional is of class ${\tt C}^1$. The unknown coefficients, or nodal values, are taken to be the incremental displacement at nodes. Then we may write

$$\underbrace{\mathbf{u}^{(m)}}_{\mathbf{w}_{1}, \mathbf{d}\mathbf{w}_{1}, \mathbf{d}\mathbf{v}_{2}, \mathbf{d}\mathbf{w}_{2}}^{T} \\
= \langle d\mathbf{u}_{1}, d\mathbf{u}_{2}, d\mathbf{u}_{3}, d\mathbf{u}_{4} \rangle^{T}$$
(30)

for a representative element m, where dv_i , dw_i are the radial and the axial components of incremental displacement of the i-th node. Then the incremental displacement field inside the element may be written as

$$\underbrace{\mathbf{u}}_{\mathbf{d}} = \begin{cases} \frac{d\mathbf{v}}{2} \\ d\mathbf{w} \end{cases} = \begin{vmatrix} \frac{1+\mathbf{t}'}{2} & 0 & \frac{1-\mathbf{t}'}{2} & 0 \\ 0 & \frac{1+\mathbf{t}'}{2} & 0 & \frac{1-\mathbf{t}'}{2} \end{vmatrix} \begin{cases} \frac{d\mathbf{v}_1}{d\mathbf{w}_1} \\ d\mathbf{v}_2 \\ d\mathbf{w}_2 \end{cases}$$

$$= N\mathbf{u}^{(m)}, \qquad (31)$$

where t' is the local coordinate varying from the value of -1 at node 2

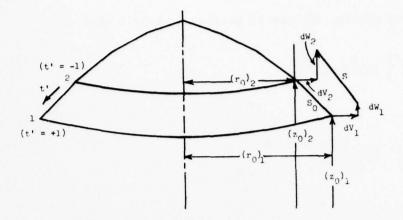


Figure 1. Approximation of the Sheet Geometry into a Series of Conical Frustra

to +1 at node 1. (See Fig. 1.) Due to this incremental displacement field, an element of length \mathbf{s}_0 ,

$$s_0 = \sqrt{\{(r_0)_1 - (r_0)_2\}^2 + \{(z_0)_2 - (z_0)_1\}^2},$$

is stretched to a new length s,

$$s = \sqrt{\{(\mathbf{r}_0)_1 - (\mathbf{r}_0)_2 + d\mathbf{v}_1 - d\mathbf{v}_2\}^2 + \{(\mathbf{z}_0)_2 - (\mathbf{z}_0)_1 + d\mathbf{w}_2 - d\mathbf{w}_1\}^2}$$

$$= \sqrt{(\mathbf{r}_1 - \mathbf{r}_2)^2 + (\mathbf{z}_2 - \mathbf{z}_1)^2},$$
(32)

where $(r_0)_i$, $(z_0)_i$ are the radial and the vertical positions of the i-th node at the undeformed configuration and $(r)_i$, $(z)_i$ at the deformed configuration. Since the element is straight, any point of t' in the local coordinate is shown to have a global radial position r_0 determined by

$$\mathbf{r}_0 = (\frac{1+t'}{2})(\mathbf{r}_0)_1 + (\frac{1-t'}{2})(\mathbf{r}_0)_2.$$
 (33)

The new position r of the same particle is given by

$$r = r_0 + \frac{(1 + t')}{2} dv_1 + \frac{(1 - t')}{2} dv_2.$$
 (34)

We are now at the position of calculating the strain increment field.

Recall the equation (25) and substitute Eqs. (32), (33), and (34) into it to obtain

$$d\tilde{E} = \begin{cases} \frac{1}{2} \ln \frac{\left\{ (\mathbf{r}_0)_1 - (\mathbf{r}_0)_2 + d\mathbf{v}_1 - d\mathbf{v}_2 \right\}^2 + \left\{ (z_0)_1 - (z_0)_2 + d\mathbf{w}_2 - d\mathbf{w}_1 \right\}^2}{s_0^2} \\ \ln \frac{\mathbf{r}_0 + \frac{(1+t')}{2} d\mathbf{v}_1 + \frac{(1-t')}{2} d\mathbf{v}_2}{\mathbf{r}_0} \end{cases}$$
(35)

We may write $\phi^{(m)}$, a contribution from the m-th element to the total functional Φ , in terms of nodal values, for unit angle included:

$$\phi^{(m)} = \int \left\{ \bar{\sigma} d\bar{E} + \frac{1}{2} H'(d\bar{E})^2 t dA - \int (T_i + dT_i) v_i dA \right\}$$

$$= \int \bar{\sigma} (\sqrt{\frac{2}{3}} t) \left[d\underline{E}^T \underline{D} d\underline{E} \right]^{1/2} dA + \frac{1}{2} \int H'(\frac{2}{3} t) \left[d\underline{E}^T \underline{D} d\underline{E} \right] dA - \int \underline{T}^T \underline{N}\underline{u}^{(m)} dA ,$$
(36)

where

$$T = \begin{cases} T_1 + dT_1 \\ T_2 + dT_2 \\ T_3 + dT_3 \\ T_4 + dT_4 \end{cases}.$$

Minimization gives a set of simultaneous equations:

$$\frac{\partial \phi^{(m)}}{\partial \underline{u}^{(m)}} = \int (\sqrt{\frac{2}{3}} t) \bar{\sigma} [d\underline{E}^T \underline{D} d\underline{E}]^{-1/2} \frac{\partial (d\underline{E})^T}{\partial \underline{u}^{(m)}} \underline{D} d\underline{E} dA + \int (\frac{2}{3} t) H' \frac{\partial (d\underline{E})^T}{\partial \underline{u}^{(m)}} \underline{D} d\underline{E} dA - \int \underline{N}^T \underline{T} dA .$$
(37)

From Eq. (35),

$$\frac{\partial}{\partial u_1} \left(\frac{\partial (dE_1)}{\partial u_1} - \frac{\partial (dE_2)}{\partial u_1} \right) = Q = \begin{vmatrix} \frac{\partial (dE_1)}{\partial u_1} & \frac{\partial (dE_2)}{\partial u_2} & \frac{\partial (dE_2)}{\partial u_2} \\ \frac{\partial (dE_1)}{\partial u_3} & \frac{\partial (dE_2)}{\partial u_3} & \frac{\partial (dE_2)}{\partial u_3} \\ \frac{\partial (dE_1)}{\partial u_4} & \frac{\partial (dE_2)}{\partial u_4} & \frac{\partial (dE_2)}{\partial u_4} \end{vmatrix} = \begin{vmatrix} \frac{r_1 - r_2}{s^2} & \frac{1 + t'}{2r} \\ \frac{-(r_2 - r_1)}{s^2} & 0 \\ \frac{-(r_1 - r_2)}{s^2} & \frac{1 - t'}{2r} \end{vmatrix}$$
(38)

Therefore, Eq. (37) becomes

$$\frac{\partial \phi^{(m)}}{\partial \underline{u}^{(m)}} = \int \left(\frac{2}{3} t\right) \bar{\sigma} \left[\frac{2}{3} d\underline{E}^{T} \underline{D} d\underline{E}\right]^{-1/2} \underline{Q} \underline{D} d\underline{E} dA + \int \left(\frac{2}{3} t\right) H' \underline{Q} \underline{D} d\underline{E} dA - \int N^{T} \underline{T} dA = 0.$$
(39)

These equations, being valid for an m-th element, are now to be combined under the condition of compatibility that the first-order derivative of modal value may be discontinuous across element boundaries but the nodal value itself must be continuous,

$$\frac{\partial \Phi}{\partial \underline{u}} = \sum_{k} \frac{\partial \Phi^{(m)}}{\partial \underline{u}^{(m)}} = 0. \tag{40}$$

4. Linearization

Eqs. (39) and (40) are nonlinear equations and it is very difficult to solve them without linearizing. One way is to take an initial guess of the solution to the equation as u^* and rewrite Eq. (39) in terms of the differences between this initial guess and the correct solution Δu , where $u_{\text{correct}} = u^* + \Delta u$, and expand it. Where the initial guess is sufficiently close to the correct solution, we may neglect higher-order terms of Δu and

thereby linearize successfully. This can be done mathematically in a systematic way and is called the Newton-Raphson method [22]. Say we have a nonlinear equation $\psi(u)=0$, then we may expand into a series with respect to the correct solution u_0 such that

$$\psi(u) = \psi(u_0) + \left(\frac{d\psi}{du}\right)_{u=u_0} (u - u_0) + \frac{1}{2} \left(\frac{d^2\psi}{du^2}\right)_{u=u_0} (u - u_0)^2 + \cdots$$

$$= \psi^* + \left(\frac{d\psi}{du}\right)^* \Delta u + \frac{1}{2} \left(\frac{d^2\psi}{du^2}\right) (\Delta u)^2 + \cdots = 0.$$

If \mathbf{u} and \mathbf{u}_0 are sufficiently close, we may neglect the higher-order terms and write

$$\psi = \psi^* + \left(\frac{\mathrm{d}\psi}{\mathrm{d}u}\right)^* \Delta u = 0. \tag{41}$$

In our formulations the equations to be minimized are $\frac{\partial \phi^{(m)}}{\partial u^{(m)}} = 0$, and, therefore, the expressions corresponding to Eq. (41) are

$$\left| \frac{\partial^2 \boldsymbol{\varphi}^{(m)}}{\partial u_{\mathbf{i}}^{(m)} \partial u_{\mathbf{j}}^{(m)}} \right|^* (\Delta \mathbf{u}) = \left| -\frac{\partial \boldsymbol{\varphi}^{(m)}}{\partial u_{\mathbf{i}}} \right|^*. \tag{42}$$

It may be shown that

$$\frac{\partial^{2} \phi^{(m)}}{\partial u_{i}^{(m)} \partial u_{j}^{(m)}} = P^{(m)} = \frac{2}{3} \int \frac{1}{d\bar{E}} \left\{ \left[\bar{\sigma} + H' d\bar{E} \right] \left(K - \frac{2}{3} \frac{bb^{T}}{d\bar{E}} \right) + \frac{2}{3} \frac{H'bb^{T}}{d\bar{E}^{2}} \right\} t dA$$

(43a)

where

and that

$$\frac{\partial \boldsymbol{\phi}^{(m)}}{\partial u_{i}^{(m)}} = \tilde{H}^{(m)} - \tilde{E}^{(m)}, \tag{43b}$$

where

$$H^{(m)} = \frac{2}{3} \int \frac{1}{d\bar{E}} (\bar{\sigma} + H' \overline{dE}) bt dA$$

$$F^{(m)} = \int \underline{N}^T \underline{T} dA$$
.

By assembling the equations obtained for an element, we finally have

$$P^*\Delta u = F - H^* \tag{44}$$

We evaluate the integrals with the Gaussian quadrature formulation.

We have yet to introduce the boundary conditions for solving a physical problem. For an incremental displacement prescribed boundary, the corresponding perturbations should vanish and, for a traction prescribed boundary, the prescribed traction value will enter into the \underline{F} vector. The solution procedure is as follows:

- (1) Assume an initial guess \mathbf{u}_1 , and compute P, H, F corresponding to this guess.
- (2) Solve Eq. (3.31) and obtain Δu .
- (3) Obtain a new initial guess $u_2 = u_1 + \Delta u$.

Repeat this process until convergence is achieved. Convergence is checked by the fractional norm. A norm is defined by a square root value, i.e.,

$$\|u\| = \sqrt{u_1^2 + u_2^2 + \cdots}$$

and

$$\|\Delta \mathbf{u}\| = \sqrt{(\Delta \mathbf{u}_1)^2 + (\Delta \mathbf{u}_2)^2 + \cdots}$$

The fractional norm is the ratio $\frac{\|\Delta u\|}{\|u\|}$ and when, for subsequent iterations, this value reaches the magnitude smaller than a predetermined value, say, 10^{-6} , the iteration stops and the solution is thus obtained.

SECTION IV

HYDROSTATIC BULGING

1. Introduction

The ductility of sheet metal under biaxial stress is often examined by means of the so-called bulge test. A uniform plane sheet is placed over a die with an aperture and is firmly clamped around the perimeter. An increasing hydrostatic pressure is applied to one side of the sheet, causing it to bulge through the aperture. From the measured profile and thickness of the plastically deformed sheet near the pole, it is possible to calculate the local state of stress in terms of the applied pressure. If, in addition, the state of strain is measured by means of a grid, the stress-strain characteristics of the metal under biaxial tension are obtained. The advantage of this test over any other simple one is that a greater range of preinstability strain can be obtained.

Hydrostatic bulging is not only important as a material property test, but also as a forming operation. Thus, a number of theoretical investigations, dealing with axisymmetric hydrostatic bulging (Fig. 2) has appeared in the literature.

The classical analysis of bulging is the one by Hill [23]. His solutions are, however, special ones. Instead of analyzing deformation with a given stress-strain characteristic, Hill first adopted special kinematic assumptions and from them deducted the necessary stress-strain characteristics which satisfy all the governing equations under the prescribed kinematic mode. The kinematic assumptions are first, that any material element describes a circular path which is, moreover, orthogonal to the

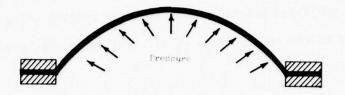


Figure 2 Schematic view of hydrostatic bulging.

momentary profile, and second, that circumferential strain is numerically equal to the tangential strain. The required stress-strain characteristic is found to be an exponential type. Hill's other solution on a linear workhardening solid uses the method of successive approximation by adopting a yield criterion which is neither von Mises nor Tresca, for the purpose of mathematical simplicity.

Analyses of work by Woo [24], Yamada [25], and Wang [26] are based upon the realistic choices of stress-strain characteristics and the yield criterion. In applying the deformation theory of rigid plasticity, Wang experiences a mathematical difficulty and attributes this to the fact that the differential equations associated with the deformation theory possesses a singularity which has the effect of restricting the range of calculation within a certain value of the polar strain. Besides, the agreement of deformation theory predictions with the experiment is rather poorer than the incremental theory prediction [27].

In applying the incremental theory of rigid plasticity, researchers experience a difficulty in satisfying the boundary condition at the fixed edge, i.e., $\dot{\varepsilon}_{\theta} = 0$. To avoid this difficulty, Woo uses the deformation theory, while Yamada reasons that introducing an elastic strain component into the formulation will resolve this "mathematical difficulty" (in Yamada's terms) and turns to the elasto-plastic constitutive law. Another theoretical work of interest comes from Wang, using the parametric representation of the stresses.

The only published solution on hydrostatic bulging using the finiteelement method is the one by Iseki et al. [28], with the incremental theory of elasto-plasticity.

2. Computational procedures

In adopting the finite-element model to hydrostatic bulging, it is necessary to reconsider the external work increment term, since the pressure is uniform over the entire surface of a closed shell. In this case the increment of external work may be written as [29], [30],

$$\Delta \mathbf{w} = \mathbf{p} \nabla \bar{\mathbf{V}}, \tag{45}$$

where $\nabla \bar{V}$ is the increase of the volume enclosed by the deformed sheet and p is the pressure acting on the deformed configuration.

As an initial condition, Hill's special solution is utilized. In other words, the initial profile of the bulge is assumed to be a part of a sphere whose radius is given by $r = \frac{1}{2} \left(\frac{a^2}{h} + h \right)$, where a is the radius of the original blank and h is the polar height at the moment. With this geometry, a pressure p is prescribed. This pressure should be greater, at least, than the pressure which makes the sheet having initial geometry everywhere plastic. The initial guess on the incremental displacement is also obtained from Hill's special solution by assuming normal trajectory of the element particle to the bulge profile. The program for computing the initial guess is given in Appendix A.

When a converged solution is obtained for the given pressure, a new bulge profile is determined from the initial bulge profile and incremental displacement grid. Then the pressure is assigned a higher value and the converged solution for the previous step is used as the initial guess for the incremental displacement field and the computation continues in this way. The program for the analysis of hydraulic bulge is given in Appendix B.

3. Results and discussion

To examine the validity of the present FEM for hydrostatic bulging, the solution is compared with those achieved by the elasto-plastic FEM and the experiment.

The following conditions were employed for the comparison with the elasto-plastic FEM:

Workhardening characteristics: $\bar{\sigma} = 105(.0019 + \bar{\epsilon})^{0.2} \times 10^9 \text{kg/m}^2$ = $1.036(.0019 + \bar{\epsilon})^{0.2} \times 10^9 \text{N/m}^2$

Thickness: $3.0 \times 10^{-4} \text{m} (= 0.3 \text{ mm})$

Radius of the sheet: 2.4×10^{-2} m (= 24 mm)

Anisotropy parameter: 1.0

An identical problem was also solved by Yamada [25], using the finite-difference method with the elastic-plastic theory. Fig. 3 shows the relationship between hydrostatic pressure and the polar thickness strain. The solid line represents the elasto-plastic FEM (and also the finite-difference method) and the points indicate the solution given by the rigid-plastic FEM. The deviation of the first point by the rigid-plastic FEM is thought to reflect the approximation involved in the initial condition that the sheet is everywhere plastic and that the initial geometry is a part of a sphere. The solution can be improved numerically by taking a smaller value of h in generating the initial condition. Nevertheless, the solutions after this first step are in extremely good agreement with the elasto-plastic FEM and any disturbance in the initial conditions does not matter after an initial deformation of a small magnitude. The pressure increment is raised by twice after some deformation and it is to be noted that the solutions

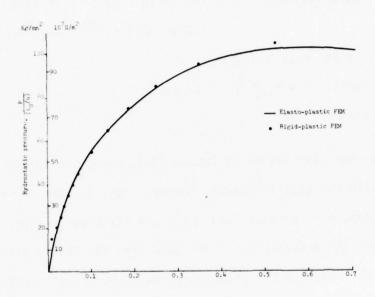
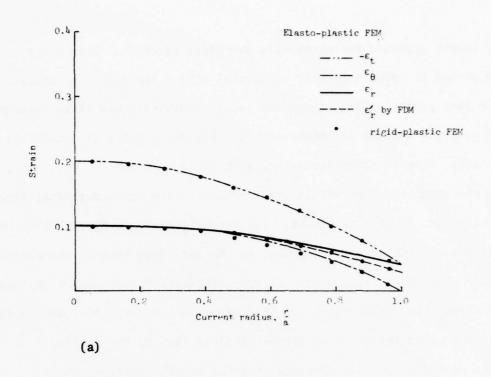


Figure 3. Hydrostatic pressure vs. polar thickness strain.

with the larger pressure increment size are still accurate. This means that the method is computationally economical with a reasonable accuracy. After the last point in the diagram the solution diverges and it is thought that the pressure maximum has been reached. The convergence is excellent; in every step, five to seven iterations seem to be sufficient. Fig. 4(a), (b) show the comparisons of strain distributions. The circumferential strain distributions are in good agreement. The tangential strain distribution by the rigid-plastic FEM deviates somewhat at the edge from that by the elastoplastic FEM. The tangential strain is more sensitive to the method employed than the circumferential strain, but this deviation of tangential strain is not serious because the solution closely follows that by the finitedifference method and we may conclude that the strain distribution is accurately predicted. Fig. 5 shows the distributions of stresses when the polar thickness strain is (-0.4). Fig. 6 shows the bulge profile at some stages of deformation. A number of material elements are traced during deformation and are shown on each bulge profile.

Next, the solution is compared with Mellor's [31] experiment on half-hard aluminum.


Workhardening characteristics: σ = 15,460(1 + 0.76 ϵ) psi = 1.066(1 + 0.76 ϵ) × 10⁸N/m²

Radius of the sheet: 5.0 inches = 1.27 m

Thickness: .035 inch = 8.89×10^{-4} m

Anisotropy parameter: 1.0

One thing to be mentioned is that in the actual experiment, the die has a round profile of radius $\frac{3}{8}$ in., but in the analysis this profile has been

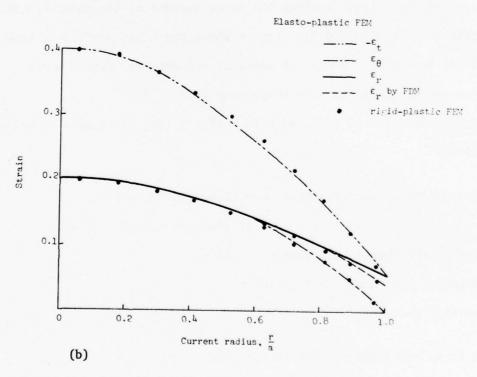


Figure 4. (a) and (b) Distribution of Strains.

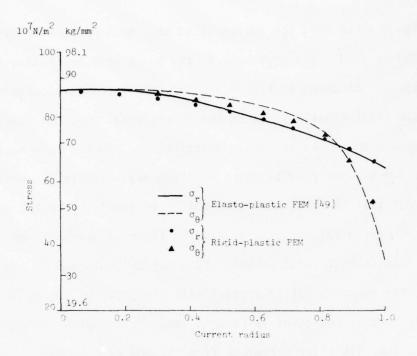


Figure 5. Distribution of Stresses

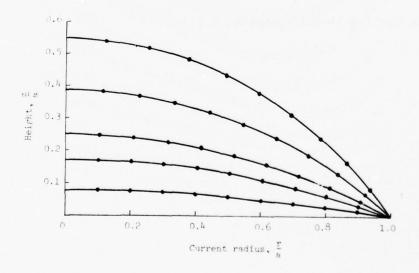


Figure 6. Bulge Profile

neglected. Fig. 7 shows that the agreement of the relation between pressure and polar height is good. The agreement in the bulge profile is also excellent, as in Fig. 8. As shown in Fig. 9(a), (b), the theoretical circumferential strain still closely predicts the experimental one, but there is some discrepancy in thickness strain distribution. As has been mentioned, the actual die has a round profile which has been neglected in the analysis, and it is thought that the thickness strain is more sensitive to the profile than is the circumferential strain. Initially, there is virtually no discrepancy, but increases at later stages. This may be explained by the fact that initially the sheet is not in contact with the profile, but as deformation continues, more of the sheet is brought into contact with the profile and makes the actual situation different from the one used in the analysis.

In general, the theoretical prediction by the rigid-plastic FEM is in good agreement with both the experiments and the analyses by the elastoplastic FEM and the finite-difference method.

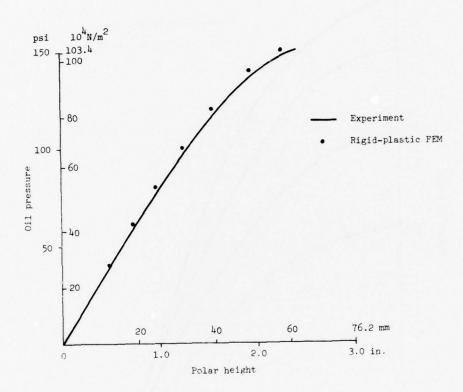


Figure 7. Polar Height vs. Pressure

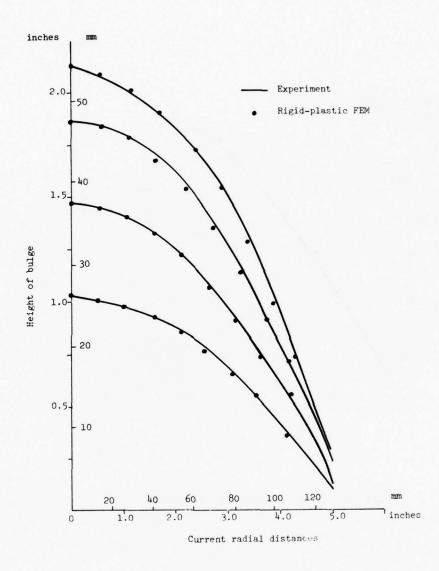
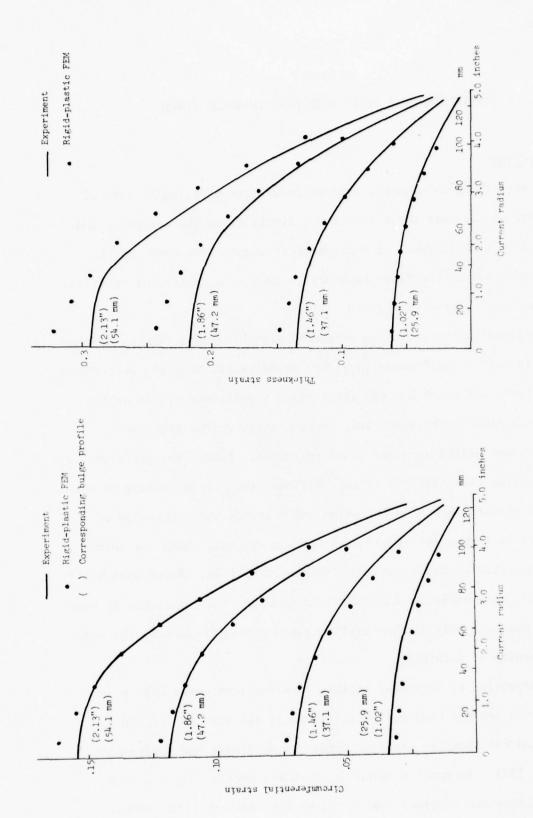



Figure 8. Bulge Profile

(a) Circumferential Strain Distribution; (b) Thickness Strain Distribution Figure 9.

SECTION V

STRETCHING OF A SHEET WITH HEMISPHERICAL PUNCH

1. Introduction

Punch stretching is commonly used to assess the pressing quality of sheet metals. A circular sheet is clamped firmly along the periphery and is stretched by a rigid punch of hemispherical shape. The depth of the deformed sheet when it fractures is usually taken as a measure of ductility. See the schematic diagram in Fig. 10.

An experimental investigation of punch stretching as a forming problem dates back to Loxely and Freeman [32], who demonstrated that the interfacial friction between the punch and the sheet has a significant effect on the strain distribution in the sheet and, consequently, on the location of fracture and dome height when the sheet fractures. Keeler and Backofen [33], in characterizing the limit stretching, followed the strain history of each element with the progress of deformation and observed the occurrence of discontinuity in tangential strain at a certain element, which was subsequently interpreted as the onset of diffuse necking [34]. Based upon Hill's analysis [35], they believed that localized necking is not possible in punch stretching, but that only diffuse necking takes place, increasing the overall nonuniformity of straining.

The observation of localized necking in situations where Hill's analysis denies one has been well established in the case of in-plane stretching and has prompted the development of Marciniak and Kuczynski's theory [36], [37]. In punch stretching, Gosh and Hecker [38] observed localized necking and reported that local necking sets in even though

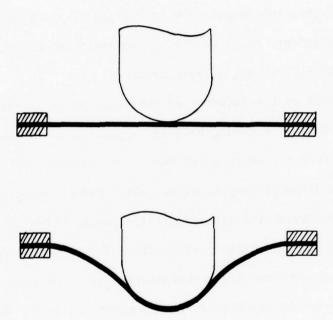


Figure 10. Schematic View of the Stretching of a Sheet with a Hemispherical Head Punch

the plane-strain condition, which is thought to be responsible for local necking in in-plane stretching, is not achieved. This is attributed to the fact that in punch stretching an increment in tangential strain is geometrically tied to an increment in circumferential strain and, therefore, the approach to plane-strain condition becomes slower. Another experimental investigation of punch stretching is the one by Alexander and Kaftanoglu [39]. They observed that the deformation is limited by the "strain propagation instability" or, local necking in common terminology, and not by "maximum load instability" or, diffuse necking.

From the viewpoint of the deformation analysis, punch stretching is a complicated problem because a moving boundary separates the region in contact with the punch head from the unsupported one. The friction over the punch head gives rise to additional complications. One special solution is by Chakrabarty [40]. Following the line of Hill's special solution on hydrostatic bulging he obtained an analytical solution for a special material having exponential type stress-strain characteristics. For more general materials the only solutions available are the numerical ones. Numerical solutions of importance are those by Woo [41] and by Wang [42], [43].

Woo's and Wang's solutions were obtained by the finite-difference method. The only solution by the finite-element method on punch stretching is one by Wifi [44]. His elasto-plastic, finite-element model does not neglect the bending moment nor the effect of shear stress and uses two-dimensional triangular elements to take the thickness variation into account. Friction, which is of primary significance compared with the secondary effect of bending and thickness, is assumed to be perfect, meaning that once the element touches the punch head, it does not slide over the punch but sticks to it.

2. Computational procedures

In applying the finite-element method to punch stretching, a thought should be given to the implementation of boundary conditions. The boundary conditions in punch stretching are stated not only by prescribing tractions and incremental displacements but sometimes by their ratios. In this report, the problem is similar to the ball indentation problem (Lee et al. [45]).

The radial and vertical positions of the material elements in the contact region are not independent but they are related to each other through a mathematical expression for the geometrical requirement that they must be actually on the surface of the punch head. The expression is

$$(r_0 + v)^2 + (c + z_0 + w)^2 = r_p^2,$$
 (46)

where \mathbf{r}_0 , \mathbf{z}_0 are radial and vertical positions of the element at the present undeformed configuration; \mathbf{v} , \mathbf{w} are the increments of horizontal and vertical displacements, and \mathbf{c} is a parameter related to the punch height \mathbf{h} by the expression

$$c = r_p - h$$
.

See Fig. 11. Recall that the finite-element formulation in Chapter IV has already been linearized and what it really solves for are the perturbation terms. Therefore, we also linearize the boundary condition (46) to obtain

$$2(\mathbf{r}_0 + \mathbf{v}^*)\Delta \mathbf{v} + 2(\mathbf{c} + \mathbf{z}_0 + \mathbf{w}^*)\Delta \mathbf{w} = \mathbf{r}_p^2 - (\mathbf{r}_0 + \mathbf{v}^*)^2 - (\mathbf{c} + \mathbf{z}_0 + \mathbf{w}^*)^2, \tag{47}$$

where starred (*) quantities are initial guesses, and Δv , Δw are perturbations. By rearranging (47), we have

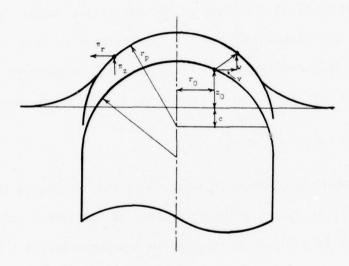


Figure 11. Geometrical Requirement for the Node on the Contact Region

$$\Delta V = \frac{1}{\alpha} \Delta W + \beta, \qquad (48a)$$

where

$$\alpha = \frac{(r_0 + v^*)}{(c + z_0 + w^*)} = \frac{1}{\tan \theta}$$
 (48b)

and

$$\beta = \frac{r_p^2 - (c + z_0 + w^*)^2 - (r_0 + v^*)^2}{2(r_0 + v^*)}.$$
 (48c)

When the finite-element model is implemented, all the tractions are transformed into generalized nodal forces. Therefore, it is convenient to write the boundary condition in terms of the generalized nodal forces $\pi_{(r)}$ and $\pi_{(z)}$, the horizontal and vertical components, respectively. See Fig. 11.

Now

$$π(r) = N cos θ - S sin θ$$

$$π(z) = N sin θ + S cos θ$$
(49)

where N and S are generalized forces normal and tangential to the punch head. We eliminate N through the relation

$$\cos^2\theta + \sin^2\theta = 1$$

and obtain

$$\pi_{r} \cos \theta = \pi_{r} \sin \theta + k, \tag{50}$$

where k is the frictional force at nodes. However, from geometry we know that the following holds:

$$\cos \theta = \frac{r_0 + v^*}{r_p} , \qquad (51a)$$

$$\sin \theta = \frac{z_0 + w^* + c}{r_p} . \tag{51b}$$

So, (50) may be written as

$$\pi_{(z)} + \frac{\pi_{(r)}}{\alpha} = \frac{kr_p}{(r_0 + v^*)}. \tag{52}$$

If the die has a round profile of the radius r_D , then the requirement for a material element to lie geometrically on the profile is similar to the requirement to be satisfied on the punch head. Therefore, we have (similar to Eq. (46)),

$$(a - r_0 - v)^2 + (r_D - z_0 - w)^2 = r_D^2,$$
 (53)

where a is the radius of the sheet. Linearization of Eq. (53) gives

$$2(a - r_0 - v^*)\Delta v + 2(r_D - z_0 - w^*)\Delta w = -r_D^2 + (a - r_0 - v^*)^2 + (r_D - z_0 - w^*)$$
(54)

or, rewriting,

$$\Delta \mathbf{v} = \frac{\Delta \mathbf{w}}{\gamma} + \Omega, \tag{55a}$$

where

$$\gamma = -\frac{(a - r_0 - v^*)}{(r_0 - z_0 - w^*)} \tag{55b}$$

and

$$\Omega = \frac{(a - r_0 - v^*)^2 + (r_D - z_0 - w^*)^2 - r_D^2}{2(a - r_0 - v^*)}.$$
 (55c)

The tractional boundary condition over the die profile can be written similarly as

$$\pi_{(z)} + \frac{\pi_{(r)}}{\gamma} = -\frac{k\gamma_D}{(a - r_0 - v^*)}$$
 (56)

For the portion of the sheet which is not in contact with the punch head nor with the die profile, the displacement increment in the radial direction and the displacement increment in the axial direction are not bound to each other, as is the case for the contact region, but remains as independent variables. Tractions are, however, given the value of zero.

With the advancement of the punch head, the portion of the sheet in contact with the punch or die profile increases and, consequently, the boundary separating this "contact region" from the "unsupported region" changes. The presence of this moving boundary is always a source of complications in the numerical analysis of punch stretching because it requires a basically trial-and-error approach. The treatment of the moving boundary used in the present analysis for punch stretching without round die corners is explained in detail as follows:

First, assume the position of the boundary in future configurations. In the FEM this means assuming which nodes will be in contact with the punch head in the future configuration. Then, obtain a converged solution based upon this assumption and check to see if it is true. Since the position of the boundary is already known in the current configuration, in practice we assume and check how much this boundary advances.

Check whether the boundary is assumed to advance too fast.
 Compute the normal component of the generalized nodal force

If every generalized normal force is directed outward from the punch head, then all the nodes which are assumed to be in contact with the punch head actually do so. On the other hand, the generalized normal force in the direction toward the punch head for any node means that external force other than the one exerted by the punch is necessary for this particular node to conform with the punch geometry. Since there is physically no source of applied force other than the punch, the assumption that this particular node is in contact with the punch head is not correct and the position of the boundary should be re-assumed to exclude this node from the contact region.

(2) Check whether the boundary is assumed to advance too slowly.

Compute the distance between the nodes in the unsupported region and the center of the hemisphere of the punch head. If this distance is shorter than the radius of the punch head for any node, it means that this particular node is inside the punch head. Since this is physically impossible, the assumption that this particular node is not in contact with the punch head is not correct and the position of the boundary should be reassumed to include this particular node.

Although this basically trial-and-error approach seems to be very time consuming, in actual computation we can predict the movement of the boundary fairly accurately based upon the distance between the free nodes and the punch surface. Furthermore, since we already know the position of the boundary in the current configuration, it is enough to check the

boundary assumption for only a few nodes neighboring the previous position of the boundary, not for whole nodes.

The procedure described above for the contact region on a punch head is also applicable for the contact region at the die corner. Handling two moving boundaries simultaneously really does not invoke any new theoretical difficulties but only takes more computation time and may be impractical for inefficient numerical methods.

In order to implement Coulomb friction between sheet and punch or die, we first prescribe a tangential friction force S and obtain a converged solution and then compute generalized nodal forces. From Eqs. (49) we then are able to compute the normal component N and the friction coefficient $\mu = \frac{S}{N} \text{ corresponding to the initially prescribed value of S. If the computed friction coefficient is not what is intended, then we modify the S value and repeat the process. It should be noted here that the correction of frictional force S needs the necessary modification only in the F matrix (Eq. (44)), while the stiffness matrix P, which is the most time-consuming part, remains the same.$

The deformation step is controlled by the punch head increment, which is designed in the present codes to yield the maximum increment of effective strain roughly equal to a preset value. In the present work the optimum size is shown to be a 0.04 increment of effective strain. The solution generally converged after $10 \sim 15$ iterations for a single step within the fractional norm of 10^{-6} . The actual program is shown in Appendix C.

3. Results and discussion

The present rigid-plastic FEM is compared with the finite-difference methods by Wang [43] and Woo [41], and also with the experiment by Kaftanoglu and Alexander [39].

(1) Comparison with the finite-difference solution by Wang

The parameters used in Wang's example are as follows:

Material: copper

Stress-strain characteristics: $\sigma = 30.5\epsilon^{0.326} \text{ ton/in.}^2$ = $4.6361\epsilon^{0.326} \times 10^8 \text{N/m}^2$

Anisotropy: R = 1.0

Friction: $\mu = 0.04$

Thickness: $t = 0.035 \text{ in.} = 8.89 \times 10^{-2} \text{ m}$

Punch radius: $r_p = 1.0 \text{ in.} = 2.54 \times 10^{-2} \text{ m}$

Radius of sheet: $a = 1.15 \text{ in.} = 2.921 \times 10^{-2} \text{ m}$

Initial radius is sometimes denoted by r_0 .

The two methods are in excellent agreement in predicting the punch head for a given punch travel. See Fig. 12; the solid line represents Wang's solution and the points represent the rigid-plastic FEM. Fig. 13 shows the thickness strain distribution. Again, a good agreement between the two solutions is apparent.

The second example has the following parameters:

Stress-strain characteristics: $\sigma = k\epsilon^{0.2}$

Anisotropy: R = 1.0

Friction: $\mu = 0.2$

Punch radius: $r_p = 1.0$

Radius of sheet: $r_0 = 1.0$

In Wang's work all the results are reported in the dimensionless number.

Figs. 14 and 15 show the circumferential strain distribution and thickness strain distribution, respectively. The solid line represents Wang and points

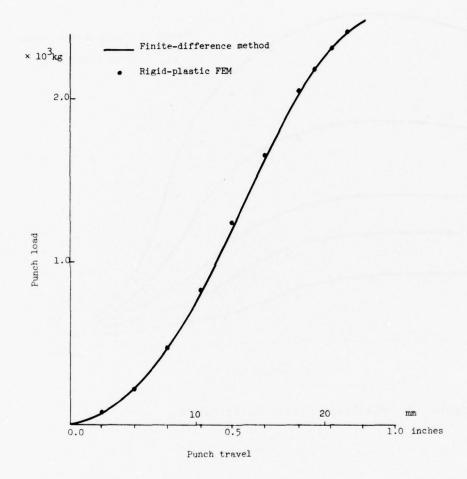


Figure 12. Punch Head vs. Punch Travel

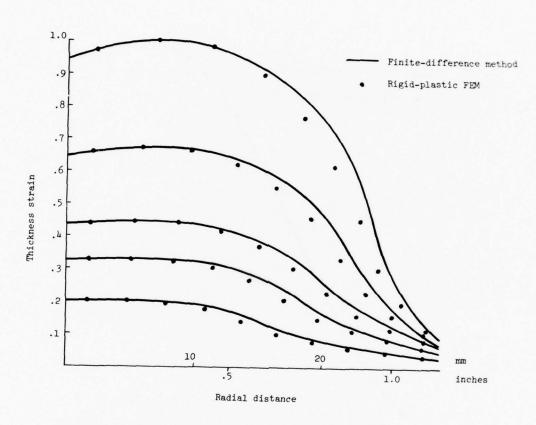


Figure 13. Thickness Strain Distribution

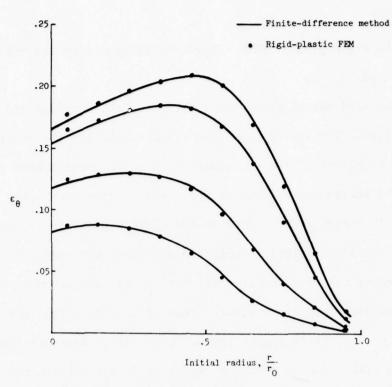


Figure 14. Circumferential Strain Distribution

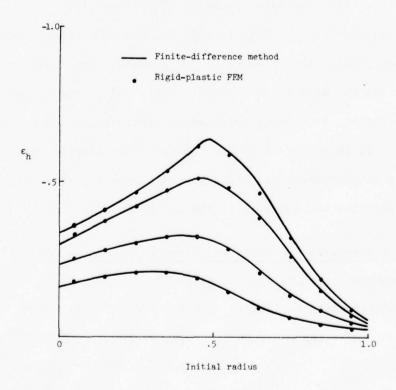


Figure 15. Thickness Strain Distribution

represent the rigid-plastic FEM. Excellent agreement of the two solutions is demonstrated.

The step size has an important effect upon the accuracy and efficiency of the solution. The smaller the step size, the better the accuracy, although more computation time is required. Fig. 16 demonstrates that there is a limit to increasing efficiency while maintaining accuracy. For example, solutions with a step size of 0.08 in the effective strain increment deviates considerably from the solutions obtained with step sizes of .02 or .04. In the remainder of the work the step size of .04 is most often used.

Compared with this significant effect of step size, the mesh size does not exert a great influence upon the solution, as is demonstrated in Fig. 17. The solution with a coarse mesh (10 elements) is essentially the same as the one with a finer mesh (40 elements), even though the latter will be helpful in pinpointing the exact location of peak strain.

In the examples above, there is only one moving boundary, that between punch and sheet, since the presence of the round die profile is neglected. In practice, the die always has a round profile and as the radius of the profile gets larger, it becomes necessary to include the die profile in the analysis. In this case there are two moving boundaries, the second being the one between sheet and die. The only work reported which includes the die profile into the analysis is the one by Woo.

(2) Comparison with the finite-difference solution by Woo

The parameters in Woo's example are:

Stress-strain characteristics:
$$\sigma$$
 = 5.4 + 27.8 $\epsilon^{0.504}$ ton/in.²
for ϵ < 0.36: = (0.08208 + 0.422569 $\epsilon^{0.504}$) × 10⁹N/m²
= 5.4 + 24.4 $\epsilon^{0.375}$ ton/in.²
for ϵ > 0.36: = (0.08208 + 0.37089 $^{0.375}$) × 10⁹N/m²

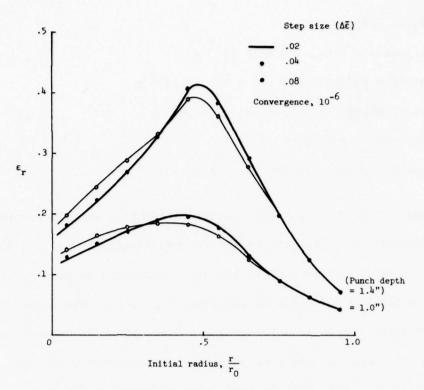


Figure 16. Effect of Step Size

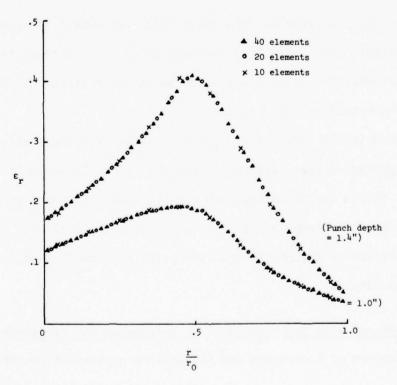


Figure 17. Effect of Mesh Size

Material: copper

Punch radius: 1 in. = 2.54×10^{-2} m

Die profile radius: 0.3 in. = 7.62×10^{-3} m

Radius of sheet: 1.3 in. = 3.302×10^{-2} m

Coefficient of friction: 0.04

Thickness of sheet: $0.035 \text{ in.} = 8.89 \times 10^{-4} \text{ m}$

Figs. 18 and 19 are the thickness strain distribution and the circumferential strain distribution. Solutions by Woo are represented by solid lines and the solutions by the rigid-plastic FEM are represented by points. Agreement between the two solutions is excellent for most of the deformation. However, at later stages of deformation, a discrepancy is observed around the edges. Re-examining Woo's computational procedure reveals that in order to avoid the difficulty of satisfying boundary conditions exactly along the fixed edge (ε_{θ} = 0), he allowed a small increment of circumferential strain along the edge at each stage. In the present rigid-plastic FEM such difficulty does not exist, so there is no need to relax the boundary condition. The discrepancy observed at later stages of deformation may be attributed to this difference.

With regard to the instability, Woo stated that it occurs when the resultant tangential stress determined from the strain hardening characteristics cannot obtain the value required for the equilibrium and at that instant he stopped the computation. In the present rigid-plastic analysis such an instability is not observed at the point reported by Woo, and the computation continues.

(3) Comparison with the experiment by Kaftanoglu and Alexander

The parameters of Kaftanoglu and Alexander's experiment on soft copper are:

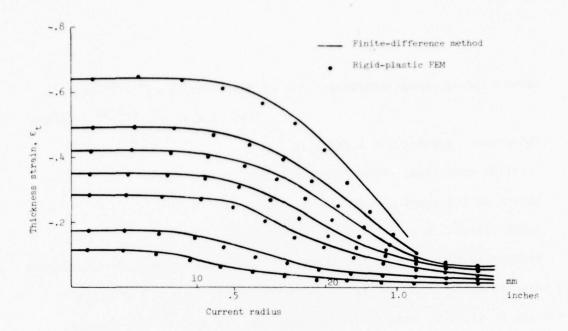


Figure 18. Distribution of Thickness Strain When Die Profile Is Considered

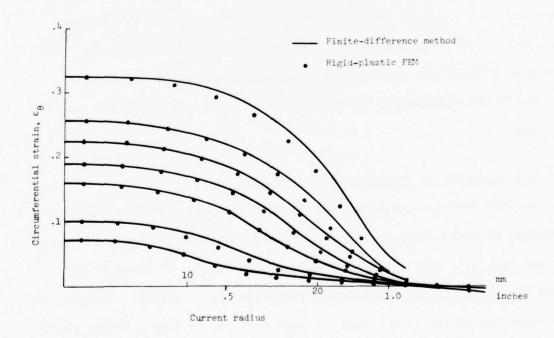


Figure 19. Distribution of Circumferential Strain When Die Profile Is Considered

Stress-strain characteristics: $\sigma = 68,394(0.0122 + \epsilon)^{0.3789}$ psi = $4.7156 (0.0122 + \epsilon)^{0.3789} \times 10^{8} \text{N/m}^2$

Thickness: 0.048 in. = 1.219×10^{-3} m

Friction condition: PTFE film lubricant

Radius of the sheet: 0.717 in. = 1.821×10^{-3} m

Punch radius: $0.65 \text{ in.} = 1.651 \times 10^{-3} \text{ m}$

Kaftanoglu reports that the friction condition changes with deformation and measures three different friction coefficients: μ = 0.2 at stage 1, μ = 0.135 at stage 2, and μ = 0.07 at stage 3. To include the changing friction coefficient into the analysis, we need more information on the friction history, which is difficult to obtain experimentally. Therefore, as a representative value, we use the mean of three values of the friction coefficient, μ = 0.135, for our computation. Figs. 20 and 21 show the distribution of the circumferential strain and the thickness strain. The agreement between the experimental data and the numerical solution is a reasonable one considering the fact that the exact friction condition is not known.

(4) Influence of formulation of constitutive relation

Various formulations have been given for plastic stress-strain relationships of workhardening materials. Among them, the parabolic hardening law has been used extensively for sheet metals because of the ease with which it characterizes workhardening properties of materials. However, it was suggested recently [46] that the Voce equation [47] is a better representation of materials behavior when solving plasticity problems involving workhardening rate. The forming limit curves were compared using the

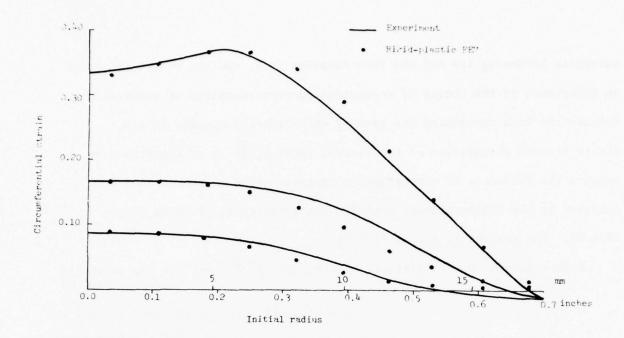


Figure 20. Comparison of the Numerical Solution with the Experimental Data for Circumferential Strain Distribution

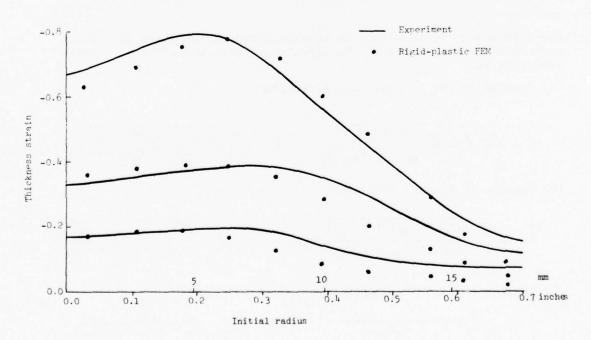


Figure 21. Comparison with the Experiment for Thickness Strain Distribution

parabolic hardening law and the Voce equation [48], and the result indicates an importance of the choice of workhardening representation of materials. Because the term containing the rate of workhardening appears in the finite-element formulation of sheet-metal forming, it is of importance to examine the influence of workhardening representation on the mechanics computed by the finite-element method. The material is aluminum alloy 2036-T4. The parameters are as follows:

Stress-strain characteristics: σ = 86,000(ϵ) 0.222 psi for the parabolic hardening law σ = 65,000{1 - (1 - 0.508) exp(-8.51 ϵ)} psi for the Voce equation

Fig. 22 shows the two stress-strain curves together with tension test data from the specimens cut in the three directions $(0^{\circ}, 45^{\circ}, 90^{\circ})$.

$$\bar{\sigma} = \sqrt{\frac{3}{2}} \sqrt{\frac{\mathbf{r}_{90} + \mathbf{r}_{0}\mathbf{r}_{90}}{\mathbf{r}_{0} + \mathbf{r}_{90} + \mathbf{r}_{0}\mathbf{r}_{90}}} \, \sigma_{0}, \qquad \bar{\varepsilon} = \sqrt{\frac{2}{3}} \sqrt{\frac{\mathbf{r}_{0} + \mathbf{r}_{90} + \mathbf{r}_{0}\mathbf{r}_{90}}{\mathbf{r}_{90} + \mathbf{r}_{0}\mathbf{r}_{90}}} \, \varepsilon_{0};$$

(b) Tension in the 45° direction:

$$\bar{\sigma} = \sqrt{\frac{3}{2}} \sqrt{\frac{(\mathbf{r}_0 + \mathbf{r}_{90})(1 + \mathbf{r}_{45})}{2(\mathbf{r}_0 + \mathbf{r}_{90} + \mathbf{r}_0\mathbf{r}_{90})}} \, \sigma_{45}, \qquad \bar{\varepsilon} = \sqrt{\frac{2}{3}} \sqrt{\frac{2(\mathbf{r}_0 + \mathbf{r}_{90} + \mathbf{r}_0\mathbf{r}_{90})}{(\mathbf{r}_0 + \mathbf{r}_{90})(1 + \mathbf{r}_{45})}} \, \varepsilon_{45};$$

(c) Tension in the 90° direction:

$$\tilde{\sigma} = \sqrt{\frac{3}{2}} \sqrt{\frac{\mathbf{r}_0 + \mathbf{r}_0 \mathbf{r}_{90}}{\mathbf{r}_0 + \mathbf{r}_{90} + \mathbf{r}_0 \mathbf{r}_{90}}} \, \sigma_{90}, \qquad \tilde{\varepsilon} = \sqrt{\frac{2}{3}} \sqrt{\frac{\mathbf{r}_0 + \mathbf{r}_{90} + \mathbf{r}_0 \mathbf{r}_{90}}{\mathbf{r}_0 + \mathbf{r}_0 \mathbf{r}_{90}}} \, \varepsilon_{90};$$

à

(Footnote continued on next page)

[†](1) The stress and strain values in tension tests in the three directions were converted to values of the effective stress and effective strain according to

⁽a) Tension in the 0° (rolling) direction:

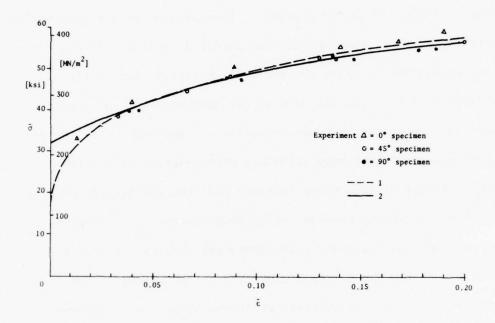


Figure 22. Stress-strain Curve for Al. 2036-T4

r-value: $r_0 = 0.66$, $r_{45} = 0.69$, $r_{90} = 0.70$, and $r_a = 0.685$

Radius of die opening: (0.80 in.)

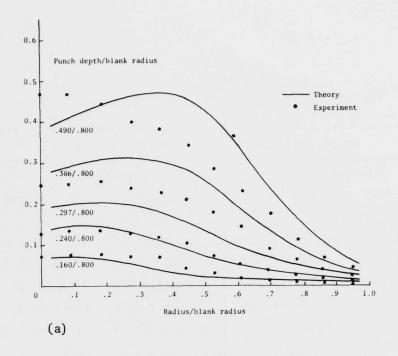
Blank thickness:

Radius of punch head: 0.75 in. and 0.45 in.

Coefficient of friction: 0 and 0.2

Punch stretching was performed on a horizontal hydraulic press. Tests were interrupted for strain measurements (thickness and circumferential strains) from the grids photoprinted on the specimen. Load-displacement relationships were also recorded. First, the experimental strain distributions were compared with computed results, using the parabolic hardening law in Fig. 23. In the experiment Johnson's wax was used as the lubricant and was applied at each stage. In comparison, two discrepancies are apparent: (i) the coefficient of friction does not stay constant; particularly, at the last stage, the experimental strain distributions indicate that the coefficient of friction is less than 0.2, which, however, gives good agreement for other stages, and (ii) the measured thickness and circumferential strains for a given punch depth do not follow the corresponding theoretical curves. This is attributed to the fact that the accurate strain measurements is extremely difficult for critical comparison between theory and experiment. The load values summarized in Table 1 show an excellent agreement between the two.

$$\bar{\sigma} = \sqrt{\frac{3}{2} \frac{1 + r_a}{2 + r_a}}$$
, $\bar{\varepsilon} = \sqrt{\frac{2}{3} \frac{2 + r_a}{1 + r_a}}$,


where r_a is the average r-value defined by $r_a = \frac{r_0 + 2r_{45} + r_{90}}{4}$.

where r_0 , r_{45} , r_{90} are the r-values obtained from the tension of specimens cut in the 0°, 45°, and 90° directions, respectively.

⁽²⁾ The effective stress and effective strain defined in the formulation of this report differ from the definition above by a factor such as

 $\label{total condition} \mbox{Table 1}$ PUNCH LOAD AND DISPLACEMENT RELATIONS

	I	ounch head	d radius :	= 19.05 m	m (0.75	in.)		
Theoretical				Experimental				
Displacement mm (in.)		Punch load N (1b)		Punch (1b)	Punch load (1b) N		Displacement	
4.06	(0.160)	6,330	(1,423)	(970)	4,315	2.79	(0.110)	
6.10	(0.240)	10,889	(2,448)	(1,730)	7,695	4.83	(0.190)	
7.54	(0.297)	14,483	(3,256)	(2,990)	13,300	7.11	(0.280)	
9.80	(0.386)	22,059	(4,959)	(4,940)	21,974	10.08	(0.397)	
12.45	(0.490)	30,301	(6,812)	(6,580)	29,269	12.45	(0.490)	
		Punch hea	ad radius	= 11.43	mm (0.45	in.)		
4.06	(0.160)	5,124	(1,152)	(920)	4,092	2.72	(0.107)	
6.10	(0.240)	8,131	(1,828)	(2,000)	8,896	6.30	(0.248)	
8.53	(0.336)	12,237	(2,751)	(2,770)	12,322	8.18	(0.322)	
9.58	(0.377)	13,963	(3,139)	(3,130)	13,923	9.68	(0.381)	

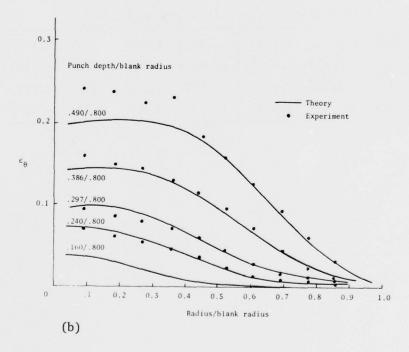
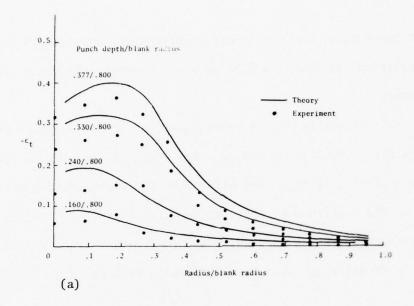



Figure 23. Experimental (Johnson's wax as lubricant) and Theoretical (μ = 0.2) Strain Distributions for Punch Size (r_p/r_0 = 0.75/0.80). (a) Thickness Strains; (b) Circumferential Strains

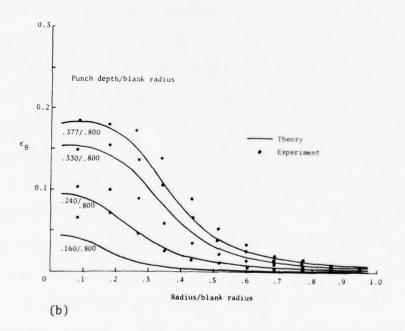


Figure 24. Experimental (Johnson's wax as lubricant) and Theoretical (μ = 0.2) Strain Distributions for Punch Size (r_p/r_0 = 0.45/0.80).

(a) Thickness Strains; (b) Circumferential Strains

For a smaller punch size, the strain distributions are compared in Fig. 24. The same observations as those in Fig. 23 apply. Again, the punch load is in good agreement.

The influence of workhardening representations on the detailed mechanics is examined in Figs. 25, 26, 27, and 28. Referring to Fig. 25, the general trend of strain distributions is not altered by the workhardening representation. However, the magnitude of strains, particularly, peak strains, differ. With the Voce equation, the peak strains are larger than those computed by the parabolic workhardening law. This difference becomes larger as the punch penetrates.

It appears that the difference of the two is more significant for higher friction in the larger punch size. However, in the smaller punch size, the difference of the two strain distributions is about the same for the two coefficients of friction, 0 and 0.2, as shown in Fig. 26.

It is rather surprising to find in Figs. 27 and 28 that the punch load for the same punch displacement is higher with the parabolic workhardening law than that with the Voce equation. The difference becomes significant for large punch penetration. From these results, it is concluded that the representation of the workhardening characteristics of the material does have an influence on the computed strain distributions and load-displacement relationships. The difference becomes critical for large punch displacement in predicting both peak strains and the punch load. In order to determine which representation is preferable, however, more experiments with improved accuracy and control are needed.

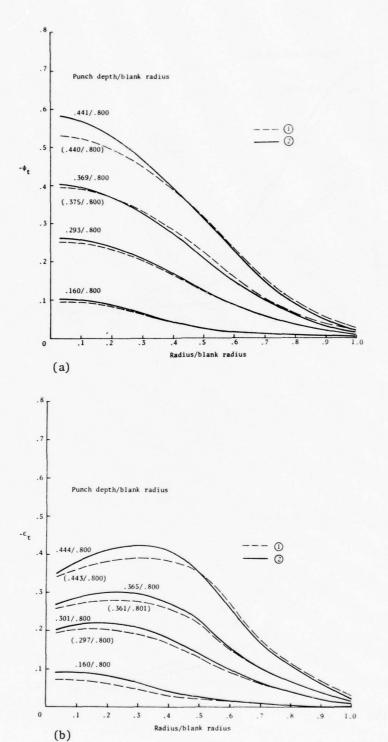
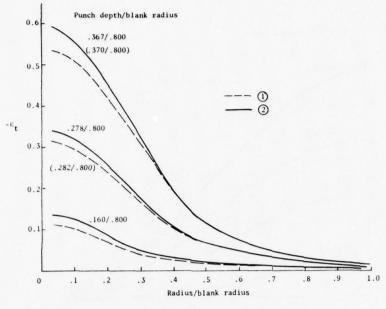



Figure 25. Comparison of Theoretical Thickness Strain Distributions Using (1) the Parabolic Workhardening Law and (2) the Voce Equation for Punch Size $(r_p/r_0 = 0.75/0.80)$ with (a) $\mu = 0$ and (b) $\mu = 0.2$

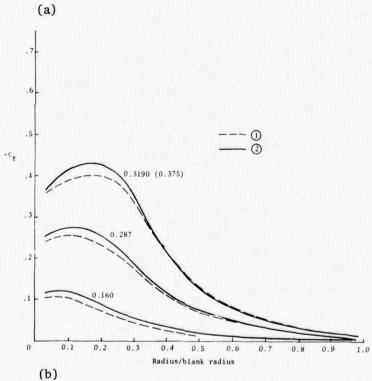


Figure 26. Comparison of Theoretical Thickness Strain Distributions Using (1) the Parabolic Workhardening Law and (2) the Voce Equation for Punch Size $(r_p/r_0 = 0.45/0.80)$ with (a) $\mu = 0$ and (b) $\mu = 0.2$

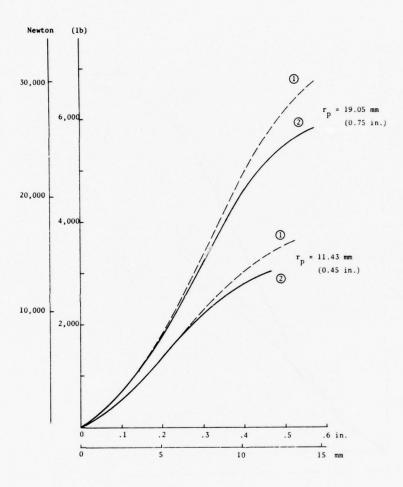


Figure 27. Comparison of Theoretical Load Displacement Curves Using (1) the Parabolic Workhardening Law and (2) the Voce Equation for μ = 0

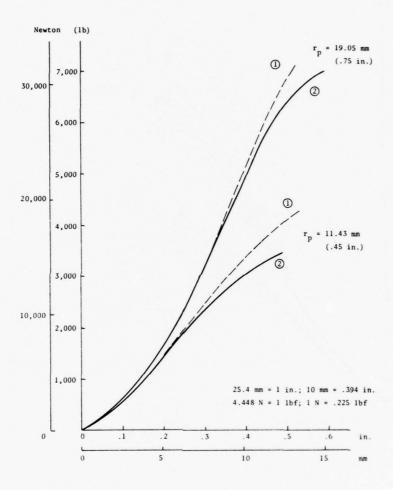


Figure 28. Comparison of Theoretical Load Displacement Curves Using (1) the Parabolic Workhardening Law and (2) the Voce Equation for μ = 0.2

SECTION VI

DEEP DRAWING OF A SHEET WITH HEMISPHERICAL PUNCH

1. Introduction

In a deep drawing test a circular sheet of metal is placed between the blank holder and the die and then fully drawn into the shape of a cup. The formability is then measured by the maximum size of the blank which can be drawn without a failure, or, more often, by its ratio to the punch diameter. This ratio is called the limiting drawing ratio and this particular kind of test is called the Swift test.

Deep drawing is not only a useful method of material testing, but also one of the basic operations in sheet-metal stamping. In practice, various shapes are possible for the bottom of the punch; however, most past investigations are on deep drawing with a flat-bottomed punch [49]-[56].

Among the earlier works on deep drawing are those by Hill [13] and by Chung and Swift [52] using the incremental theory of plasticity. More refined analyses are the finite-difference solutions by Chiang and Kobayashi [57], b- Wang and Budiansky [51], and by Chakrabarty and Mellor [49]. Even though such a refinement improves the understanding of the deep drawing process, their works are not complete because they treat the deep drawing problem as an in-plane pure radial drawing and are concerned mostly with the deformation mechanics on the flange. However, it has been observed experimentally (Chung and Swift [52]) that the die profile and the punch profile significantly affect the punch load and the strain distributions and therefore a further refinement is necessary by considering these parameters in the analysis. Woo [53] performs such an analysis and then

is able to show that the solution obtained by extrapolating the strain distribution over the flange to the die throat predicts more straining than the one obtained by taking the profiles into consideration.

Contrary to these numerous investigations on deep drawing with a flatbottomed punch, very few works are reported on the deep drawing of a sheet with a hemispherical head punch (Fig. 29). Woo [58] analyzes this problem by breaking down the deep drawing process into two component processes of the pure radial drawing over the flange and the punch stretching over the hemispherical punch head. He first obtains solutions for pure radial drawing in the flange and then uses this solution at a point initially situated near the die lip as the boundary condition for the stretching problem, and thereby essentially matched the punch stretching component with the pure radial drawing component at a particular point in the die profile region.

Instead of this tedious process of boundary matching, it is desirable to have a numerically efficient and reliable method which can treat the problem in a unified manner. The FEM is such an alternative. The finite-element model developed for the deep drawing problem is the one by Wifi [44] with a limited treatment of friction. Also, Levy et al. [59] developed the elasto-plastic finite-element program for cupdrawing based on the deformation theory of plasticity.

2. Computational procedure

The entire sheet undergoing the deep drawing process can be divided into four regions: the contact region with the punch head, the unsupported region, the contact region with the die profile, and the flange over the die. Different kinds of boundary restrictions are imposed depending upon

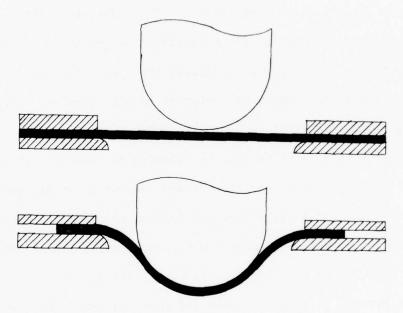


Figure 29. Schematic View of Deep Drawing of a Sheet with a Hemispherical Head Punch

the regions. For example, the flange is constrained to move only horizontally along the die face, while the contact region with the die profile or punch head should satisfy the kind of boundary conditions discussed in Section V.

The only difference in deep drawing with a hemispherical head punch from the punch stretching with a round die corner is the presence of the flange which is free to slide over the die. The addition of this moving flange is, in effect, equivalent to the addition of the third moving boundary, because, even though the boundary separating the flange from the die profile remains stationary in the space, it continues to move from the viewpoint of the deforming sheet. To treat this we make an assumption on this third moving boundary and see if it is true by checking the radial positions of the nodes. If the new radial position of any node which is assumed to lie on the flange or the die profile does not fall on the expected region after converged solution is obtained, then the boundary assumption is modified.

Another point to be mentioned is the blank holding condition of which there are two types: clearance holding and force holding. The idealization of the deformation state corresponding to the force blank holding is the plane stress state and the one corresponding to the clearance holding in the plane-strain state. The present rigid-plastic FEM is built to handle the plane stress state deformation and therefore a modification is necessary to handle the clearance blank holding. No reported work on deep drawing with a hemispherical head punch under clearance blank holding is available and therefore in the present work only the deep drawing with the force holding is analyzed. The blank holding force is implemented in the formulation as a tengential friction force acting on the last node located at the

rim of the sheet. The distribution of the blank holding force over a finite area near the rim can be handled without difficulty in the present FEM, but this distributional effect turns out to be insignificant [53]. Therefore, tangential frictional force is confined to the last node at the rim of the sheet. The increment of deformation is controlled by the punch head movement. The program is in Appendix D.

3. Results and discussion

The only available work on the complete analysis of deep drawing with the hemispherical head punch is one by Woo [58]. Along with the numerical solution by the finite-difference method, he also conducted an experiment. The parameters are:

Material: soft copper

Stress-strain characteristics: $\sigma = 5.4 + 27.8\epsilon^{0.504}$ ton/in.²

for $\varepsilon < 0.36$: = $(0.08208 + 0.422569 \varepsilon^{0.504}) \times 10^9 \text{N/m}^2$

= $5.4 + 24.4 \epsilon^{0.375}$ ton/in.²

for $\epsilon > 0.36$: = $(0.08208 + 0.37089\epsilon^{0.375}) \times 10^9 \text{N/m}^2$

Blank radius: 2.2 in. = 5.588×10^{-2} m

Radius of the die throat: $2.123 \text{ in.} = 5.392 \times 10^{-2} \text{ m}$

Radius of die profile: 0.5 in. = 1.27×10^{-2} m

Radius of punch head: 1 in. = 2.54×10^{-2} m

Blank holding force: 0.5 ton = 500 kg

The solution by the rigid-plastic FEM is in excellent agreement with the experiment for the flange part; however, over the punch head it predicts more straining than the experiment when the friction coefficient of 0.04 is assigned for the contact region over the punch head and over the die in the

numerical analysis. When the friction coefficient is increased to a value of 0.1 over the punch head, while the same friction coefficient of 0.04 is used for the flange, the analysis predicts less straining over the punch head than the experiment. See Figs. 30, 31, 32, and 33. The deviation of the numerical solution from the experimental data gets larger as deformation progresses, which is reflected in the punch load vs. punch depth relationship in Fig. 34.

The lubricant used in the experiment is graphite in tallow and Woo suggested the friction coefficient to be 0.04. In the analysis the practical difficulty always lies in the assignment of a reasonable value of friction coefficient because friction coefficient under a real sheet-metal forming condition is hard to measure and it may even change during deformation.

Comparison of Woo's numerical solution with the experimental data does not yield any better agreement than the present rigid-plastic FEM. In comparing his numerical solution with the experiment Woo made the correction on the circumferential strain based upon the argument that the strain value obtained from the analysis is the value at the neutral surface of the sheet, while experimental data are obtained from the outside surface and therefore a compensation for the thickness difference is necessary. There could be a question about Woo's correction because the ratio of the punch radius or die profile radius to the sheet thickness is sufficiently large in his experiment that the membrane theory is justifiable. Besides, it seems a more consistent way to consider the problem in the three-dimensional stress state instead of the plane stress condition, which is the case used in Woo's analysis, if the variation of the strain across the thickness is to be taken into account.

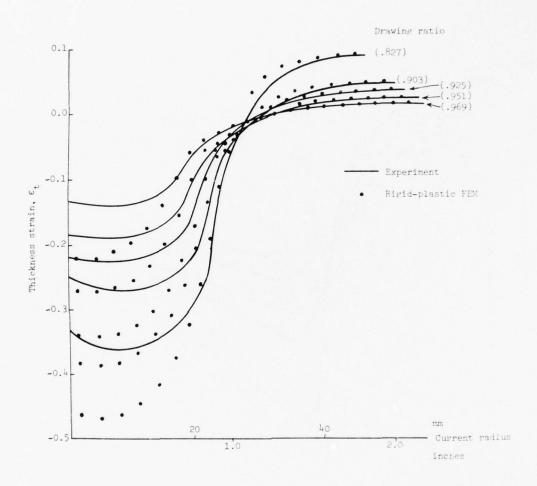


Figure 30. Distribution of Thickness Strain for μ_p = 0.04, μ_d = 0.04

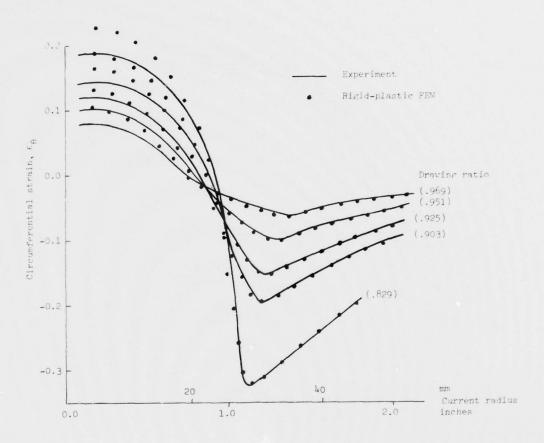


Figure 31. Distribution of Circumferential Strain for μ_p = 0.04, μ_d = 0.04

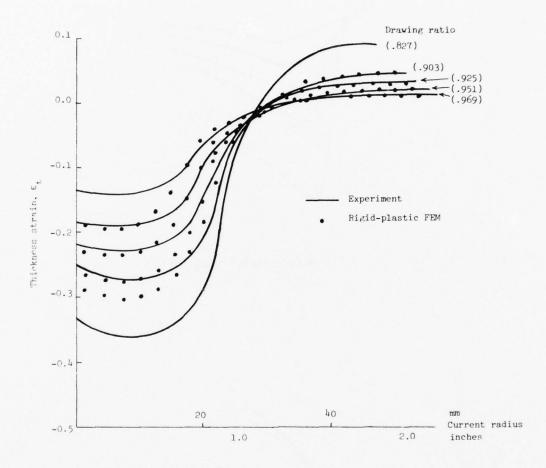


Figure 32. Distribution of Circumferential Strain for μ_{d} = 0.1, μ_{d} = 0.04

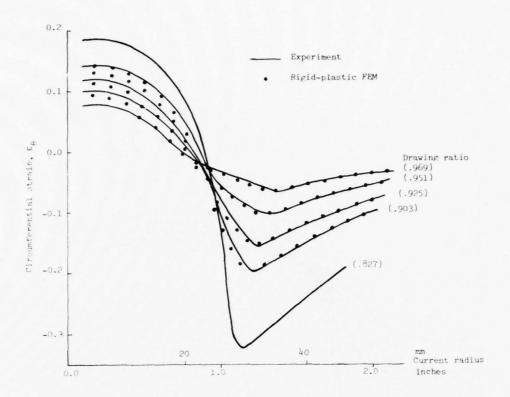


Figure 33. Distribution of Circumferential Strain for μ_p = 0.1, μ_d = 0.04

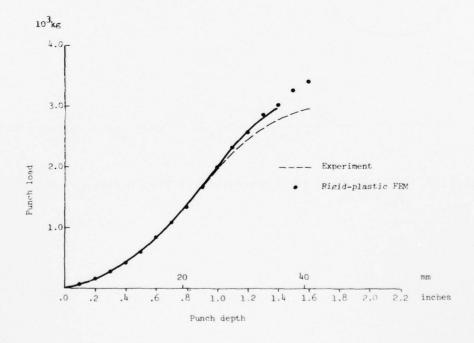


Figure 34. Punch Load vs. Punch Depth

It is necessary to have more numerical solutions and experimental data with a known friction state to assess the validity of the present rigid-plastic FEM for deep drawing problems. However, the present rigid-plastic FEM had dealt with other sheet-metal forming problems in a unified and consistent manner and therefore it seems reasonable to expect its validity for deep drawing problems when it is established for other problems.

SECTION VII

SUMMARY AND DISCUSSION

It has been made clear that classical variational formulations for the rigid-plastic solid are not appropriate for solving the sheet-metal forming problems. This is due to the nonuniqueness of the deformation mode under certain boundary conditions. This nonuniqueness, however, can be resolved by taking the workhardening rate into consideration. Such an introduction of the workhardening rate into the formulation, on the other hand, necessitates the consideration on the geometry change. The available classical formulation in which these two aspects are considered is not, however, applicable to the statically indeterminate problems, sheet-metal forming being one, because it is formulated in such a way that knowledge of stress distribution is necessary.

Within the framework of Eulerian descriptions and the hypothetical identity of the deformed configuration with the undeformed configuration, further improvement in the applicability of the variational formulations to the statically indeterminate problems is not possible. Therefore, an incremental deformation at a generic stage is considered by separating the deformed configuration from the undeformed configuration. The relevant equations are expressed with the undeformed configuration at each step as the reference frame and the variational formulation is established.

From this variational formulation a finite-element model is developed for the sheet-metal forming priblems. In many sheet-metal forming processes the membrane theory is justifiable and therefore this idealization is introduced in building the model.

Three basic sheet-metal forming processes, i.e., the bulging of a sheet subject to the hydrostatic pressure, the stretching of a sheet with a hemispherical head punch, and deep drawing of a sheet with a hemispherical head punch are solved by the proposed method and its solutions are compared with the existing numerical solutions and the experimental data. The agreement is generally excellent and therefore the prime objective of the present investigation has been achieved.

In hydrostatic bulging the strain distributions and the pressure vs. polar height relationship predicted by the present rigid-plastic FEM are in excellent agreement with the available numerical solution by the elastoplastic FEM and experimental data. The difficulty of satisfying the boundary condition along the fixed periphery experienced in the finite-difference method does not appear in the present rigid-plastic FEM.

In punch stretching, to make the problem more tractable, the presence of the die profile is neglected first so that there is only one moving boundary. This problem is successfully solved. Taking the die profile into consideration is equivalent to introducing another moving boundary, and while handling two moving boundaries simultaneously could be time consuming, the present rigid-plastic FEM again proves to be efficient and reliable. The strain distributions and the punch load vs. punch depth relationship predicted by the present rigid-plastic FEM are in excellent agreement with the numerical solutions by the finite-difference method and the experimental data.

We then investigate the influence of workhardening representation by comparing solutions, computed by both the parabolic workhardening law and the Voce equation methods. The two workhardening representations result

in the difference of peak strains and load-displacement relationships, and the difference becomes increasingly significant as punch displacement increases. It is concluded, however, that the selection of a proper work-hardening representation requires more experiments with improved accuracy and control.

The present method is further extended to the deep drawing problem. The strain distribution predicted by the present rigid-plastic FEM is in excellent agreement with the experimental data over the flange of the sheet; however, over the punch head, agreement is not as good. By assigning two different values of the friction coefficient over the punch head, two strain distributions are obtained; one predicts more straining than the experimental data, and vice versa. Therefore, an improvement in the prediction seems possible by giving the friction coefficient a proper value which is between these two bounds; however, the validity of the present rigid-plastic FEM for deep drawing analysis remains inconclusive at this stage mostly because of the lack of comparable numerical solutions and experimental data. This is apparently due to the increased sophistication and accompanying computation time when three moving boundaries are treated simultaneously and to the practical difficulty of determining proper friction coefficients.

It is concluded that the present rigid-plastic FEM can treat the sheetmetal forming problems with efficiency and reasonable accuracy.

APPENDIX A

PROGRAM FOR THE INITIAL GUESS FOR HYDROSTATIC BULGING ANALYSIS

This program is to provide the initial guess and initial geometry for Appendix B. It is based upon the analysis by Hill [23].

(I) Data preparation

1. Read NUMNP (I5)

NUMNP: Total number of nodal points to be generated

2. Read RADIUS, DIS1, DIS2 (3F 10.0)

RADIUS: Radius of the sheet to be bulged

DIS1: Polar height of the bulge in the initial geometry
DIS2: Polar height of the bulge in the new configuration

```
GPIC
             THIS PROGRAM IS TO CENERATE THE INITIAL GEOMETRY AND VELOCITY
GRID
             C
GRID
                   FIELD FOR HYDROSTATIC BULGE PROBLEM, FOLLOWING HILL
GRID
             GPIC
             C
GRIC
                  COMMON #(2000)
6517
         9
GRID
        10
GRID
        11
             C NUMNP=NUMBER OF NODAL FCINTS TO PE GENERATED
GP I D
        12
        13
GRIC
GRID
             C
GRIC
        15
                   REACES, 1001 INUMNP
GRID
        16
             GPID
GPIC
        18
                  N1 = 1
GRID
        19
                  N2 = N1+ NUMNE
GRIO
        20
                  N3=N2+NUMNP
                  N4=N3+NUMNE
GRID
        21
6310
        22
                   N5=N4+NUMNP
        23
GFID
                  N6 = N5 + NUMNP
                  N7=N6+NUNNF
GRID
GRID
        25
                   NA=N7+NUMNP
GRID
        26
                   N9=N9+NUMNP
                  N1C=NG+NUMNP
GPID
        27
GRID
        28
                  N11=N10+NUMNP
GRID
        29
GRID
        30
                  CALL GUESS (A(N1).A(N2).A(N3).A(N4).A(N5).A(N6).A(N7).A(N8).A(N6).
GRID
        31
GRID
        32
        33
GFID
              1001 FORMAT(15)
GRID
GRID
        35
                   STOP
GPID
                   END
GRID
                   SUBROUTINE GUESS(RF.ZZ.CODE.SLOF.F.Z.UR.UZ.UUF.UUZ.NUMNF)
                  DIMENSION RR(1).ZZ(1),CODE(1),SLOF(1),R(1),Z(1),UR(1),UZ(1),UUR(1)
GRID
        30
GPID
        40
                  1.007(1)
GPIN
GRID
        42
             C
GPID
        43
                  READ(5, 1001)RADTUS, C151,D152
GRID
                  NUMEL=NUMBE-1
                  K=0
CIS=CIS1
GRIC
        45
GRID
        46
GRID
        47
                   DR=RADIUS/FLGAT (NUMNF-1)
GRID
        48
             C
GPID
        49
GRID
        50
                50 K=K+1
GPID
                  IF(K .EQ. 2)DIS=DIS2
GRID
        52
        53
GRID
                  DC 100 1=1.NUNNF
                  IF(K .EG. 1)F(I)=F0
IF(K .EG. 1)Z(I)=0.
IF(PR .EG. 0.1G0 TO 1CC
GPID
        55
56
GPIO
GRID
        57
                   P1 = (RACIUS*RACIUS/PG-FF)/2.
GPID
GPID
                   R2=(RADIUS*RACILS/DIS+DIS)/2.
GRIC
        59
                   CISI=R2-DIS
                   UF(1) =(F2*R2-F1*FR-F2*CIS1)*F1/(G1*G1+R2*D2)
GRID
        60
GRID
                   UZ(1)=(R2*RR+Q2*R1-R1*DIS1)*91/(P1*P1+R2*02)
GRID
        62
                   CCDE(I)=0.
GFID
        63
                   SLOP(1)=0.
GPID
             C
GRID
        65
              100 RE-FD-DE
                  UZ (NUMNP)=DIS
GRID
        66
GRID
                   UF (NUMNE)=0.
GPID
        68
                   1FIK .EQ. 2160 10 301
        69
70
             C
GPID
GPID
                   DO 300 1=1. NUMNE
GPIF
                   UU7(1)=UZ(1)
        72
GRID
               300 UUR (1)=UP(1)
GPIO
             C
```

PROGRAM GRID (INFUT, OUTFUT, TAPES=INPUT, TAPE6=DUTPUT, PUNCH)

GRID

```
74
75
76
77
78
GRIN
                                301 CONTINUE
                            c
GP 10
                                        151K .LT. 21GC TO SC
GRID
                                        DC 200 I=1.NUMNF
UR(I)=UR(I)-ULR(I)
UZ(I)=UZ(I)-UUZ(I)
GRID
GRIC
                  79
80
GRID
GRID
GRID
                  81
                                200 CONTINUE
                            c
                  82
93
84
                                        CODE(1)=3.0
GRID
                                         O. I = ( QUMUN) 3 CC)
                                         SLCF(NUMNP)=0.0
GRID
                  85
86
87
88
89
                            c
                                        DD 500 I=1.NUMNP
RR(1) =0(1)+UUF(1)
ZZ(1)=Z(1)+UUZ(1)
WRITE(6,1000)1.FR(1).ZZ(1).UUF(1).UUZ(1).SLOP(1)
WRITE(5,1000)1.FR(1).ZZ(1).UP(1).UZ(1).SLOP(1)
PUNCH 1011.I.CCCE(1).FR(1).ZZ(1).UR(1).UZ(1).SLOP(1)
GPID
GRID
GPID
GRID
                  91
GRID
GRID
GRID
                  92
93
94
95
96
                                500 CONTINUE
                           1017 FCRWAT(4F20.15)
1011 FCRWAT(15.F5.7.5F10.7)
1001 FCRWAT(15.F6.0)
1000 FCRWAT(15.6F10.7)
RETURN
GRID
GRID
GRID
                  98
GRID
                 100
```

APPENDIX B

PROGRAM FOR THE ANALYSIS OF HYDROSTATIC BULGING

This program is for the analysis of hydrostatic bulging.

- (I) Data preparation
 - 1. Read HED (A 12)
 Output title
 - 2. Read RVALUE, T, ACOEF (5F 10.0)

RVALUE: Normal anisotropy parameter Set 1.0 for isotropic material

T: Initial thickness of blank

ACOEF: Accelerating coefficient To start with, set 1.0

3. Read ITER, NREAD, ITCONT, NFORM, NPUNCH, NPRINT, FLIMIT (615, F 10.0)
The program control card

ITER: Number of iterations to be executed

NREAD: 1, if new data are to be supplied; 0, otherwise

ITCONT: 0, if computation starts at the very beginning and first/
 second steps are included in the steps to be computed;
 l, otherwise

NFORM: Number of steps to be computed

NPUNCH: 1, if solution is to be punched at the end of each step; 0, otherwise

FLIMIT: Value of (error norm)/(solution norm) required for convergence. To start with, set this .000001

4. Read NUMNP (6 I 5)

NUMNP: Number of nodal points

5. Read YVALUE, PRESTN, EXPNT, PRESTS (4F 10.0) Material characteristics are specified. Stress = YVALUE* (Strain + PRESTN)**EXPNT + PRESTS 6. Read PRES, DPRES (4F 10.0)

PRES: Current pressure value

DPRES: Increment of pressure

Read N, CODE(N), R(N), Z(N), UR(N), UZ(N), SLOP(N), (I5, F5.0, 5F 10.0)
 Nodal information

N: Node number. Node number ${\bf l}$ is at the rim of the blank and the last node is at the pole

R(N): Radial position of the node

Z(N): Axial position of the node

UR(N): Increment of displacement in radial direction

UZ(N): Increment of displacement in axial direction

SLOP(N): Slope of the element Set this 0.0

CODE(N): Type of boundary conditions:

1.0, if magnitude of UR(N) is fixed;

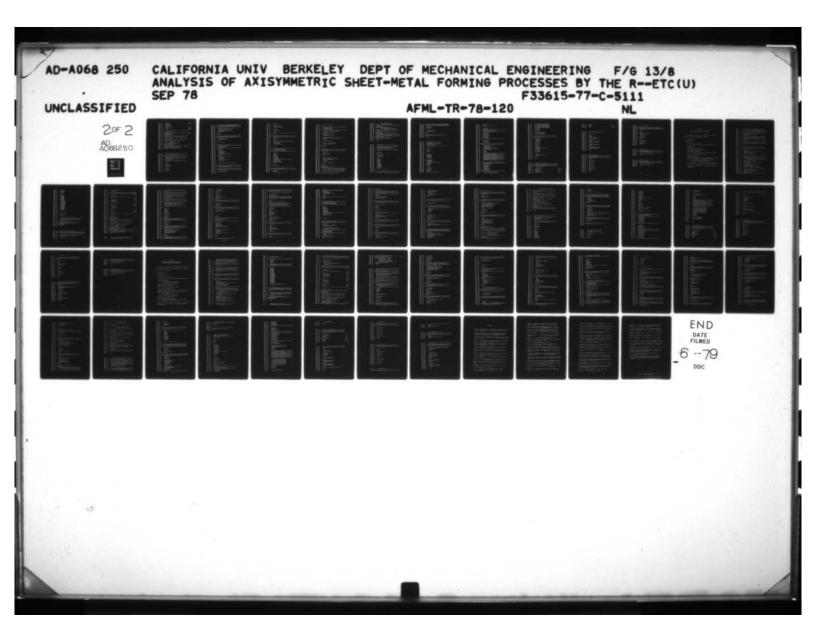
2.0, if magnitude of UZ(N) is fixed;

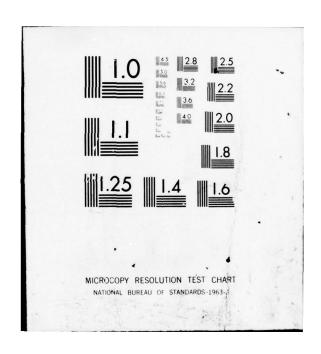
3.0, if magnitudes of UR(N) and UZ(N) are fixed;

0.0, if neither the magnitude of UR(N) nor UZ(N) are fixed

In subroutine PRELIM the interpolation of data is built in.

8. If NREAD = 1, the input data is to be placed behind nodal information cards


```
PULGE
                       PROGRAM EULGE (INPUT, OUTPUT, TAPES= INPUT, TAPE 6= OUTPUT, PUNCH)
BULGE
PULCE
BULGE
                       THIS PROGRAM IS TO ANALYZE THE HYDROSTATIC BULGE!
           5
BUL GE
PULCE
AUL GE
                       COMMON/GENCON/NUMNE.NUMEL.HET(12).CLL.NEC.NEGEM.YIELD.TEST.ITER.
BULGE
                     INREAD. NPUNCH. NPR INT. PVALUE . T. MF AND . PNPAD . SACIUS . PRES. OFFES
                      COMMON/MATERL/YVALUE, PRESTN. EXFNT, PRESTS
BULGE
                       COMMON/I SOTPY/PVAL 1
BUL GE
          10
PULGE
          11
PULGE
          12
PUL GE
          13
                       PROGRAM. IS FOR CONTPOLLING THE DIMENSION OF THE COMPLETE PROGRAM. ITS PURPOSE IS TO PREVENT ASSIGNING A LARGER THAN NECESSARY DIMENSION FOR ANY APPAY THROUGH THE USE OF THE
BULGE
          14
BUL GE
          15
PULGE
          16
BULGE
          17
                       FOLLOWING STATEMENT
PUL CE
          19
                BULGE
          19
                C
BULGE
          20
                       COMMON A( 5000)
PULGE
          21
                C
                       NFIELD=5000
RULGE
          22
BUL GE
          23
BULGE
          24
                NFIELD IS THE PIMENSION OF ARRAY A. ITS VALUE CAN BE DETERMINED PRECISELY BY FUNNING THE PROGRAM ONCE.
BULGE
          25
               C
BULGE
          26
          27
BUL GE
PUL CE
          28
          29
PULGE
                C
PUL GF
          30
                       TEST=1.
9UL GE
          31
                C
BULGE
          32
                       READ(5.1000) FED
                       READ(5, 1004) RVALUE . T. ACDEF
          33
BULGE
                       READ(5.1003) ITER. NREAC. ITCONT. NFORM, NPUNCH, NPPINT, FLIMIT
                       READ(5.1003) NUMNP
READ(5.1004) YVALUE.PRESTN.EXFNT.PRESTS
BULGE
          35
BULGE
          36
BULGE
                       READ(5.1004)PRES.CPRES
          37
PUL GE
          38
                BULGE
          39
                      HED=OUTPUT TITLE
                       RVALUE = VALUE CF THE ANISOTROPY PARAMETER
          40
PULGE
                      ACCEFEACTCLERATING OR DECELERATING COEFFICIENT OF CONVERGENCE NPEADED, IF TO BYPASS THE READING STATEMENT IN SUBBOUTINE PLAST ITCONT #0. IF COMPUTATION STATES AT THE VERY REGGINNING AND FIRST/
BULGE
RULGE
          42
BUL GE
                C
          43
BULGE
                                  SECOND STEPS ARE INCLUDED IN THE STEPS TO BE COMPUTED
                              =1. CTHEFNISE
BUL GE
          45
                       THIS INDEX IS RELATED TO THE DETERMINATION OF STEP SIZE NEORMENUMBER OF STEPS ASSIGNED PER RUN
BULGE
          46
RULGE
PUL GE
          48
                      NPUNCH=1. IF DATA ARE TO BE PUNCHED
=0. OTHERWISE
BULGE
          49
BULGE
          50
                       FLIMIT = VALUE OF (ERROR NORM)/(SOLUTION NORM) FEQUIPED
PULCE
                       FOR CONVERGENCE
          51
                       NPRINT=1. IF NOCAL POINT DATA ARE TO BE PRINTED =C. OTHERWISE
BULGE
          52
                C
          53
BUL CF
                       NUMBER OF NODAL FOINTS
RULGE
                       PRESE CURRENT PRESSURE
BUL GE
          55
                       DPRES= INCREMENT OF THE PRESSURE
PUL GE
          56
BULGE
RULGE
          58
                       YVALUE, PRESTN, EXPNT, PRESTS AFF TO EXPRESS THE WORKHARDENING CHARACTERISTICS OF THE BLANK
BULGE
          59
                       STRESS=YVALUE*(PRESTN+STRAIN)**EXFNT+PRESTS
RUL GE
          60
BULGE
          61
                       NEC-NUMBER OF EQUATIONS TO BE SOLVED
BUL GF
          62
                       NUMEL ENUMBER OF ELEMENTS
          63
BUL GE
          64
                       MEAND=BAND WIDTH
BUL GE
BUL GE
          65
          55
          67
BULGE
BUL GE
          50
                C
          59
                       NUMEL =NUMNP-1
RULGE
BULGE
          70
                       RVAL1 = RVALUE
          71
BUL GE
                       MRAND=6
                       NEG=NUMNE#3
BULGE
AUL GE
                       NO=NEO
          74
                       NEL = NUMEL
BUL GE
               C
AUL GE
BUL CE
          76
                       N1=1
```


N2=N1+NUMNP

PULGE

```
PULCE
       119
                  END
                  SUBPOUTINE PRELIMIE. 7. LR. U7. CECE. SLEP)
AUL GE
       121
FULGE
       122
                  COMMON/ CENCON/NUMNP, NUMEL, HED (12), DLL, NEO, NEORM, YIELD, TEST, I TEF.
BULGE
       123
                 INREAD . NEUNCH . NERINT . RVALUE . T . MP AND . PNF AC . PACIUS . PRES . DPPES
PUL CE
       124
            C
RULGE
       125
BULGE
       126
                 DIMENSION R(1).Z(1).CCDE(1).UF(1).UZ(1).SLCP(1)
            127
PUI GF
BULGE
       128
PUL GE
       129
PULGE
       130
PUL GE
               50 CONTINUE
       131
PULGE
       132
                 WEITE (6,2000) FED . NUMNP . NUMEL
RULGE
       133
                  CALL HARD (O . . YTELT)
                  WRITE (6.2010) YIELD
BUI GE
       1 34
                  WRITE(6,1009) ITER
AULGE
       135
RULGE
       136
PUL GE
       137
            138
                  REAS AND PRINT OF NODAL POINT DATA
BULGE
       139
            BULGE
       140
       141
                  L = 0
PULGE
PULCE
                  IF (NPRINT. FO.C) OF TO CO
RULGE
       143
                  WRITE (6.1114)
PUL CE
       144
                  WRITE (6.2004)
                                                                               MAINDOBE
BULGE
       145
               60 READ
                       (5,1002) N. CCCE(K), 9(N), 7(N), UE(N), U7(N), SLOP(N)
PULGE
       145
                  NL =L+1
                                                                              MAINDOZE
                  7x=N-L
IF(L .EC. 0) GC TC 70
                                                                               WAINGO 37
PULCE
       147
BULGE
                  DP=(R(N)-P(L1)/7X
BUL CE
       149
                                                                               MAINDOSE
                                                                               WAINDONE
BUIL GE
       150
                  CZ=(7(N)-7(L))/7X
                  DURE (UR(N)-UF(L))/7X
AUL GE
       151
BULGE
                  DUZ=(UZ(K)-UZ(L))/ZX
PILCE
       153
                  DS=1SLOP(N)-SLOP(L)1/7x
PULGE
       154
BULGE
       155
              70 L=L+1
                                                                               MATHODIST
      156
PULGE
                  IF (N-L ) 100,90.80
                                                                               WAINDOWN.
PULGE
```

```
RULCE
                          N3=K2+NLMNF
BULGE
           79
                          N4=N3+NUMNO
BUI GF
           80
                          N5 = NA + NUMNE
           81
                          NE=NS+NUMNP
PUL CE
BUL CE
AUN GE
            93
                          NR = A T+ NUMEL
            84
PULCE
                          NO=NA+NUMEL
            85
BULGE
PUL CE
           86
87
                          N11=N10+NUMEL
                          N12=N11+NUMEL
N13=N12+NUMEL*3
BUL CE
AUL SE
            88
BULGE
           89
                          N14=N13+NUMEL #4
BUI GE
           90
                          NISENIA + NUMEL NA
BUL GE
            91
                          N16=N15+NE0
PULGE
           92
                          N17=N16+NEQ#MEAND
           63
BIR GF
                          NI RENIZANINE
PULGE
                          N13=N19+NUMEL
AULGE
           95
                 c
PUL CE
           96
           97
                          CALL FEEL IM (4 (N1), 4 (N2), 4 (N3), 4 (N4), 4 (NE), 4 (N6))
RULGE
PUL GE
PULCE
           99
                  C
BUT GE
          100
                          IF(N)9 ale NETELD) GC TO 100
BULGE
          101
                          WRITE(6.1001) NIS
          102
PULGE
                          STOF
PUL SE
                     100 CONTINUE
          104
BULGE
                          WRITE(6,1002) N15
PULGE
          105
                        CALL PLAST(A(N1),A(N2),A(N3),A(N4),A(N5),A(N5),A(N7),A(N9),A(N3),
1A(N10),A(N11),A(N12),A(N13),A(N14),A(N15),A(N16),A(N17),A(N18),
BUL GE
          106
          107
BULGE
BULGE
          108
BULCE
          109
AULGE
          110
                   1000 FORWAT (1246)
                   1001 FORMAT(///* THE DIMENSION OF THE ARRAY (A) IS TOO SWALL*/
1* THE SIZE OF THE ARRAY (A) MUST RE *, 17)
1002 FORMAT(//* THE NECCESSARY SIZE OF THE AFFAY (A) IS*, 17)
BULGE
          111
PULCE
          112
BULGE
          113
                   1003 FORMAT(615.F1C.C)
PULGE
          114
BULGE
          115
                    1004 FOENAT (4F10.0)
                   1005 FORMAT(415.F1C.C)
PUL GE
          116
PULGE
          117
BULGE
```



```
80 CODE(L)=0.0
PUL GE
                                                                                                                                                                                                                  MA INDOAS
                                                7(L)=P(L-1)+CF
7(L)=7(L-1)+D7
AULGE
                   159
                                                                                                                                                                                                                  MA INCOA4
BULGE
                   160
                                                 UP (L )=(IP (L-1)+DUR
AULGE
                   161
BULGE
                   162
                                                UZ(L)=UZ(L-1)+CUZ
                                                 SLOP(L)=SLOP(L-1)+ns
PUL GE
                   163
PULGE
                    164
                                                GO TO 70
                                                                                                                                                                                                                  MA INDOAS
                                       90 IF(NUMNP-N) 100.110.60
AUL SE
                   165
PULGE
                   156
                                    100 WRITE (6.2009) N
AULGE
                   167
                                                                                                                                                                                                                  MA INOOS2
PUL GE
                   168
BULGE
                   169
BUL GE
                    170
                                    110 CONTINUE
                                                WRITE (6,2002) (K,CODE(K),R(K),7(K),UF(K),U7(K),SLOP(K),K=1,NUMNP)
BULGE
                   171
BULGE
BUL GE
                   173
                                                NED=3+NUMNP
                   174
                                                WEITE (6.1122) NEG. MRANC
BULGE
                                 ALL GE
                   175
                                    1002 FORMAT (15.F5.0.5F1C.0)
BULGE
                   176
                                     1003 FORWAT(1615)
BULGE
                  178
                                    1004 FORMAT(18.2111.2F10.6)
1005 FORMAT(215.4F10.0)
BUL GE
BULGE
                                     1006 FORMATI // * THE NCCAL FOINTS AT WHICH FORCE CALCULATIONS ARE DESIR
BUL GE
                    160
                                   1ED* // 2015)

1007 FORWAT(1H1,15%, 39H LINEARLY CISTFIRUTEC ROUNDARY STRESSES/
1 / 60H NODE I NODE J PRESSURE I PRESSURE J S'
2 14H SHEAR J)
PULCE
                   181
BULGE
                   182
PUL GE
                   183
BULGE
                  194
                                     1008 FORMAT(219,4E15.5)
RUL GE
RUL GE
                   185
                                     1009 FORMAT(///* MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR EACH INCREMEN
                                   1009 FORMATIVY/- THE STATE OF THE CENTRAL OF THE STATE OF THE CENTRAL OF THE CONTROL OF THE CONT
                   187
BULGE
BUL GE
BULGE
                  189
                   190
BUL GF
                                   2 * CIAGONAL ELEMENTS
PUL GE
                   191
BULGE
                   192
                                   1 30HO NUMBER OF NODAL FOINTS----- 13 /
2 30HO NUMBER OF ELEMENTS------ 13 /
2002 FORMAT (112.F12.2.2F12.3.3E24.7)
BUL GE
                   193
                                                                                                                                                                                                                  WE IN0127
RULGE
                  194
                  195
RUL GE
PUL GE
                                    2003 FORMAT (1113,416,1112)
                                                                                                                                                                                                                  MA :NO 137
                  197
                                    2004 FORMAT (/ * NODAL POINT TYPE 9-0FD:
1AD OR DISPLACEMENT Z LCAD OF DISPLACEMENT
SULGE
                                                                                                                              TYPE 9-000 INATE Z-DRDINATE P LD
PUL GE
                                                                                                                                                                                BETA-SLOPE #1
                                    2005 FORMAT(//, #FORCES SPECIFIED AT NODAL POINT*,//,

1 * NODAL PT. ELEMENT! ELEMENT2 PRESSURE
2009 FORMAT (26HONODAL POINT CARD ERROR N= 15)
                   199
BUL GE
BULGE
                  200
                                                                                                                                                                              SHEAF .. /1
PUL GE
                  201
                                                                                                                                                                                                                  44 INO 145
BULGE
                  202
                                    2010 FORMAT (// * INITIAL YIELD STRESS = *, F15.7//)
PULGE
                  203
                                                RETLAN
RULGE
                  204
                  205
                                                SUBROUTINE PLAST(F.7.UF.UZ.COCE.SLOP.YY.YX.SPHI.CPHI.DL.STS.TEPS.
                                             1EPS. P. A. THICK . PHI. NO. NEL . FLIMIT . TTCOMT . ACCEF)
                  207
```

```
BUL GE
PULGE
PUL GE
       208
             c
             FULGE
       209
BULGE
       210
                  PLAST IS THE CONTROLLING SUPECUTINE
BUL CE
       211
             C**********************
BULGE
       212
             C
BUL GE
                   COMMON/GENCON/NUMP.NUMEL.HED(12).DLL.NEG.NECRM.YIELD.TEST.ITEF.
PULGE
       214
                  INPEAD. NPUNCH. NPF INT , PVALUE . T. MRAND , PNRAD , FADIUS , FRES , DPRES
                   COMMON/CONQUAC/55(4).WT(4).D(2,2).SQFT1
RULGE
       215
                   COMMON/FORVE/FACT.DFACT
PUL GE
PULGE
       217
             C
PUL GE
                   DIMENSION R(1),7(1),UF(1),U7(1),CODE(1),SLOP(1),YY(1),YY(1).
       219
RUL GE
       210
                  1TEPS(4.1),8(1),A(NO.1),THICK(1),CPHI(1),SPHI(1),DL(1),EPS(4.1),
PULGE
       220
                  2PHI (1) . STS (3.1)
       221
PUL GF
             C
BULGE
       223
                   DEACT=DERES
RUL GE
       223
RUL CE
       224
BULGE
       225
             C
       226
                   55(1)=0.8611363116
PULGE
                   SS(21=0.3399810436
PULGE
BUL GF
       229
                   (1)22-= (1)22
                   55(4)=-55(2)
BUL GE
RULGE
       230
             c
                   DC 442 N=1. NLMEL
PUL GE
       231
PULGE
                   THICK (NI=T
       232
PULGE
       277
                   00 442 1=1 . 4
                   TED ( [ . N) = 0 .
       234
BUL CE
                   TEPS (4.N)=0.0001
PULGE
               442 CONTINUE
BULGE
       236
PULGE
       237
PUL GE
       230
```

```
PUL GE
            PULGE
BULGE
            c
       240
       241
       242
BULGE
PUL GE
                  IF(NREAD .LE. 0) GC TC 44C
REAC(5.1017) (UR(1), UZ(1), SLOP(1), I=1.NUMNP)
       244
PULCE
PULGE
       245
                  IF(ITCONT .EQ. 1) GC TC 440

PEAC(5.1017) ( R(1), Z(1), 1=1, NUMNP)

READ(5.1017)((TEPS(1.N).1=1.4), N=1, NUMEL)
BUL GF
       246
PULGE
       247
BUL GE
       248
       249
                  READ(5, 1017)(THICK(N), N=1, NUMEL)
PUL GF
BULGE
       250
                  READ(5, 2223 )FACT
              440 CONTINUE
       251
AUR GE
PULGE
       252
BULGE
       253
            C
PUL C
       254
                  NSTEDEO
BULGE
       255
             2100 NSTEP=NSTEP+1
BULGE
       256
            c
       257
MULGE
             RUL GE
       259
                 COMPUTE THE VIELD STPESS AND THE KOFKHAPDENING RATE
PUL GE
            RUL GE
       260
BULGE
       261
            C
       262
                  CD 220 N=1, NLMEL
CALL MARD(TEPS(4.N).YY(N))
CALL MARD2(TEPS(4.N).YX(N))
PULGE
BULGE
       263
PUL GF
       264
              220 CONTINUE
       265
PULGE
RUL GF
       266
            c
RULGE
       267
            c
SULGE
       268
PUL GE
       269
                  WP [ TE (6 . 1007) NSTEP
            c
PUL GE
       270
       271
BUL GE
            c
       272
273
BULGE
              659 CONTINUE
BULGE
BUL GE
       274
             C**********************
                  DETAIL OF THE PRESENT CONFIGURATION SPHI=SINE OF ANGLE PHI
BUL GE
       275
            c
BUL GE
       275
            C
PULCE
       277
                  CP+ I= COSINE OF ANGLE PHI
                  DI SELEMENT LENGTH
BULGE
       278
            c
                               C**********
       270
BUL GE
BULGE
       290
PUL GE
       2 1
                  WRITE (6.1031)
                  CC 690 N=1. NLMEL
       282
PULCE
BULGE
       283
                  NP1 =N+1
                  DR =R(N)-R(NP1)
PUL GE
       284
                  D7=2(NP11-7(N)
       285
BULGE
PUL GE
       286
                  DL(A) =SCGT(DF*DR+CZ*CZ)
                  SPHI(N) = CR/CL(N)
PUL GF
       287
BULGE
       288
                  CPHI(N)=DZ/CL(N)
BUL GE
       289
                  PHI(N) *ASIN(SPHI(N)) *180./3.14156
                  WPITE(6, 1030)N. PHI(N). THICK(N). TL (N)
       290
PULGE
              690 CONTINUE
AUL GE
       291
            C
PULCE
       292
                  FF1 =RVALUE+1 .
BULSE
       293
                  RCONST=3.*RP1/( 2.*(1.*PVALUE+RVALUE) )
D(1.1)=RP1*PCONST
BUL GE
       294
PUL GE
       295
                  D(1 .2) =RVALUE +RCCKST
BULGE
       296
PUL GE
       297
                  0(2.1)=0(1.2)
BULGE
       29B
                  0(2.2)=0(1.1)
BUL GE
       299
                  CLANDA=FP1*RP1/(1.+RVALUE+RVALUE1
SULGE
       300
                  PO I SON=RVALUE /RP1
             C
BUL GE
       301
                  DC 2000 K=1. ITER
PUL GE
       302
RULGE
       303
             c
BUL GE
       304
BUL GE
       305
                  CALL STIFF(R,Z,UR,UZ,CQDE,SLQF,YY,YX,SPHI,CPHI,DL,5PS,
BUL SE
       304
                 I THICK . A . P . NG )
PUL GE
       307
BUL GE
       306
             PULGE
       309
             C INTRODUCTION OF POUNDARY CONDITION
BULGE
       310
PULGE
       311
BULGE
       312
             C
                  CALL MCDIFY(CCDE.A.P.NUNNF, NEC. MPANE)
PULGE
BUL GE
       314
                    ************
BULGE
       315
             C SANDED SYMMETRIC SPLUTION
BUL GE
       317
PULGE
       318
RULGE
             C
                  CALL TRIAINED. WRAND. A)
CALL BACKS (NEG. MPANC. A. P)
PUL CE
PULGE
       320
RUL GE
       321
PULGE
       322
             00
       323
PUL GE
```

```
PUL CE
        394
                    DC 130 1=1. NUMNE
                    17=3=1-1
        325
PULGE
BUL GE
        325
                    10=17-1
                    15=17+1
RULGE
       327
                    UP(1)=UR(1)+E(1R)*ACCEF
PULSE
        729
PUL GE
        329
                    UZ(1)=UZ(1)+9(1Z)#ACCEF
                    SLOF(1)=SLOP(1)+P(15)*ACDEF
BUL CE
        330
        331
AUL GE
        332
BULGE
              c
BULSE
        334
                    WPITE(6.1016) K
BUL CE
PULGE
        335
336
                    WEITE (6, 1006) K
AUL GF
        337
PULGE
                    17=3+1-1
RULGE
                    1-51 == 1
        330
RIJL CE
                    WEITE(6, 1002) 1.8(IF).E(IZ).E(IS).UF(I).UF(I).SLOP(I).F(I).Z(I)
        340
BULGE
                776 CONTINUE
BUL GE
        342
PULCE
BULGE
BULGE
        343
              BULGE
        345
                    COMPLITE NORM OF EFRER AND NORM OF SOLUTION.
RUL GF
        346
PUL GE
                    ENDRM = 0.
SNORM = C.
BULGE
        349
PUL GF
        349
PULGE
        350
                    CO 134 1=1. NUMNO
        351
PUL GE
                    17=3+1-1
PUL CE
                    19=17-1
BULGE
        353
                    15=12+1
                    ENORM = ENORM + B(IR)*B(IR) + P(IZ)*B(I7) + P(IS)*P(IS)
SNORM = SNORM + UP(I)*UF(I) + UZ(I)*U7(I) + SLOP(I)*SLOP(I)
PUL GE
        354
PUL GE
        355
BUL GE
        35€
                134 CONTINUE
                    SNORM = SORT(ENORM)
PUL CE
        357
RULGE
        35A
RULGE
        359
                    ESNERM=ENDOM/SNOOM
                    WRITE(6.1015) SNOPM. ENCRY. ESNCOV
PULCE
        360
BULGE
PUL GE
        362
        363
                131 CENTINUE
PULGE
BUL GF
        364
BULGE
       355
BULGE
9UL GE
        367
              COMPUTE STRAIN FROM THE NEW GUESS.

EPS(1,N)=INCREMENT OF MERIDIAN STRAIM

EPS(2,N)=INCREMENT OF TANGENTIAL STPAIN

EPS(3,N)=INCREMENT OF THICKNESS STRAIN
AUL GE
        369
BUL GE
BUL GE
        370
              c
BULGE
       371
PUL GF
              BULGE
       373
              c
        374
AUL GF
BULGE
        375
                    CC 800 N=1.NUMEL
        376
RULGE
                    NE1 =N+1
BUL GE
                    DLL =DL(N)
PULGE
        378
                    SFEESPHI(N)
                    CPH=CPHI(N)
PUL GE
        379
                     AU=UR(N)+UP(NF1)
PULCE
        390
BULGE
        301
                    AF=F(N)+G(NF1)
        382
                    78=P(N)-P(NP1)
BUL GE
BULGE
        383
                    DZ=7(NP1)-Z(N)
BUL GF
        394
                    DU=UR(N)-UR(NF1)
BULGE
        365
                    CH=UZ(NO11-UZ(N)
BULGE
        386
                    EX1=1.+2.*DP+DU/CLL/DLL+2.*CZ+CW/CLL/DLL+(DU*CU+DW*DW)/DLL/DLL
                    EPS(1.N)=50RT(Ex1)-1.
BUL GE
        387
                    EPS (1.N) = ALOG(1 .+EPS(1.N))
        399
BULGE
BUL GE
        399
                    EPS(2.N) = AU/AR
                    EPE (2.N)=ALOG(1.+AU/AR)
PULGE
        390
BULGE
        391
                    EPS(3.N) =-EPS(1.N)-FFS(2.N)
BULGE
        392
              c
BULGE
                PCO CENTINUE
        393
AUL GE
        394
BULGE
        395
              C
        306
                    TEST=0.0
BULGE
        397
                    WRITE(6.1026) NETER
PUL CE
PUL GE
       398
              C
AUL GE
        399
PULCE
        400
              RULGE
        401
              C COMPUTE INCREMENT OF EFFECTIVE STRAIN
PUL CE
        402
BULGE
       403
AUL GF
        404
              C
                    00 222 N=1. NUMEL
PULCE
        405
BUL GE
       405
                    ESEPS(1.N)
                    ET=EDS(2.N)
PULGE
        407
PULGE
       408
                    RRAF=001+(ES+ES+ET+FT) + 2. #FVALUE*ES#FT
```

```
400
RUL GE
                       EPS(4.N)=SORT(2.*FCCNST*FPA9/3.)
PULCE
         412
AULGE
         411
AUL GF
         412
                PUL CE
         413
                       COMPUTE STRESS DISTRIBUTION
RUL GF
PULCE
         415
                       STS(1.N)=MERIDIAN STRESS
                       STS (2.N) = CIRCUMFERENTIAL STORES
RULGE
         416
         417
                       STS( 3.N) = FFECTIVE STRESS
BUL GE
PULGE
         418
                BULGE
         419
               C
                       STS(1.N)=CLAMCA*(ES + POISON*ET)*YY(N)/EPS(4.N)
STS(2.N)=CLAMCA*(ET + POISON*FS)*YY(N)/EPS(4.N)
PULGE
         420
BULGE
         421
                       IF(SENORM .LT. FLIMIT)TEST=1.0
AUL GE
         422
                  00 443 1=1. 4
447 TEPS(I,N)=TEFS(I,N)+FFS(I,N)*TFST
PULGE
         423
         474
BULGE
         425
AUL CE
                       ES=STS( 1.N)
BULGE
         424
                       ET=STS (2.N)
                       EFSTRS=ES*ES+ET*ET-2.*FOISON*ES*ET
         427
RUL GE
         428
                       STS(3.N)= SORT(EFSTRS)
BULGE
AULGE
         429
         430
BUL GE
-UL GE
         431
                       WPITE (6, 1003 N. EPS( 1. N.) . TEPS( 1. N.) . FFS( 2. N.) . TEPS( 2. N.) . EPS( 3. N.) . TEP
RUL GE
         472
                      15(3.N) . EFS(4.K) . TEPS(4.K)
BUL GE
         433
                       IF(ESNORM .LT. FLIMIT)THICK(N)=THICK(N)*EXF(FFS(3,N))
PULGE
         474
                  222 CONTINUE
PULGF
         4 35
                       WRITE(6.1027)
PULGE
RUL GE
         437
                  DD #30 N=1.NUNEL
#30 WRITE(6.2251)N.(STS(I.N).[=1.3)
PUL CF
         438
BULGE
         439
PUL GE
         440
                C
                       IF(ESNORM .LT. FLIMIT)FACT=FACT+DFACT
IF(ESNORM .LT. FLIMIT)WRITE(6.1028)FACT
IF(ESNORM .LT. FLIMIT)GC TO 428
BUL GE
         441
BUL GE
         442
         443
RULCE
         444
PULGE
                C
BUL CE
         445
                 2000 CONTINUE
                2200 CENTINUE
         445
RULGE
-UL GE
         447
PULGE
         448
         449
PULGE
                  438 CONTINUE
         450
BUL GE
PULGE
         451
PULGE
         452
                453
                      NEW CONFIGURATION
AUL GE
                AULGE
         454
BUL GE
         455
RULGE
         455
                       CO 439 I=1, NUMNP
                       17=7#1-1
BUL GF
         457
         459
                       IP=17-1
BUL GE
PULGE
         459
                       R(1)=F(1)+UR(1)*TEST
                       Z(1)=Z(1)+UZ(1)+TEST
BUL GE
         460
                  439 CONTINUE
BULGE
         461
BULGE
         462
                  777 CONTINUE
PUL GE
         463
                C
         464
PULGE
BUL GE
         465
                C
                       IF(NPUNCH .EQ. 0) GC TO 310
         465
PULGE
                       PUNCH 1017, (UF([],U7([], SLCF([], ]=1.NUMNP)
PUNCH 1017, (R([],7([],I=1, NLMNP)
PUNCH 1017, ( (TEPS([,N),I=1,4), N=1, NUMFL)
BULGE
         467
PUL CE
         469
BULGE
         469
                       PUNCH 1017. (THICK(N). N=1. NUMEL)
PUNCH 2223. FACT
AUL SE
         470
BUL GE
         471
AUL GE
         472
                  310 CONTINUE
BUL GE
         473
                C
         474
                       IF(ESNORM .GT. FLIMIT)GO TO 2300
BULGE
BUL G
         475
                C
BULGE
         475
                       IF(NSTEP .LT. NFORM) GC TO 2100
         477
RUL GE
                 2300 CONTINUE
PUL GE
         47K
BULGE
         479
                  SOC CONTINUE
RULGE
         480
RUL GF
         481
                 1002 FORMAT(15.3F12.7.5x.3F13.7.5x.3F13.7)
                 1003 FOFMAT(17.11F11.6)
1004 FORMAT(161E)
SUL GE
         482
         483
PUL CE
                 1005 FORMAT(1M1.* STRAIN-STRESS SOLUTION AT STEP NUMBER =*.14//
1 * EL. NO...P-STRAIN...Z-STRAIN..TH-STRAIN...FZ-STRAIN...EF-STRAIN
PULGE
         484
PUL GE
         485
BUL GE
         486
                      2 ... P-STRES... 74 STPES... TH-STRES... R7-STRES.. EF-STRES.. AVG-STRES...
BULSE
         487
                 1006 FDDMAT(/// 30x, * DISPLACEMENT SCLUTION AT ITERATION NUMBER =*, I4

1/// 20x, * PUFTUREEC*, 26x, * TOTAL*, 20x, * DEFCRMED COCRD*/

2/ * NP DU DE DETA U

BETA R 7*)
         488
BUL GE
BULGE
AUL GE
         490
SULGE
         491
                 1007 FORMAT(1H1.70x.*ITERATICA PERCESS FOR STEP*.14)
1008 FORMAT( 6Cx. * TOTAL R-LCAD ** F12.7
PUL GE
         493
```

```
1 / 60X. * TOTAL Z-LOAD =*, F12.7

2 / 60X. * TOTAL M-LOAD =*, F12.7)

1010 FORMAT( // * NODAL POINT FORCE --
BUL GE
         494
          495
BUL GE
PUL GF
          496
                                      // * NODAL POINT FORCE AT STEP =*. 14//
                        1* ..... N.F ..... Q-FCRCE ..... 7-FOPCE ..... Z-STRESS ON DIE SUP
BUL GF
          497
AUL GE
                        2FACE ... +)
RULGE
          400
                   1011 FORMAT (15.3F10.0)
                   1012 FORMAT(19.6F17.5)
          500
BUL GE
PUL GE
          501
                   1015 FORMATIGOX, * VELOCITY CONVERGENCE* ./
                                     60x. * NCRW CF SOLUTION VECTOR =*, F13.8

/ 60x. * NCRW OF EFRCE VECTOR =*, F13.8

/ 60x. * FRACTIONAL NORM =*, F13.P)

* DISPLACEMENT SOLUTION AT ITERATION NUMBER =*, [4]
BUL GE
          502
BUL GF
          503
RULGE
          504
                   1016 FCPMATE
BULGE
          505
                   1017 FORMAT(8F10.7)
PULCE
          506
BULGE
          507
                   1018 FCRWAT(////* COES NOT CONVERGE*//
                       1 TRY AGAIN WITH DECELLERATION COEFFICIENT -ACDEF= LESS THAN*.
          50A
BUL GF
          509
                        258.31
BULGE
                   1020 FORWAT(20F4-1)
PUL GE
          510
BUL GE
          511
                   1025 FORMAT(4x.15.3x.F12.6.10x.15.3x.F12.6.10x.15.3x.F12.6)
BULGE
          512
                   2251 FCFWAT(15,4F20,7)
1026 FORMAT(///#INCREMENTAL STRAIN-TCTAL STRAIN AT STEP NUMBER=#. 14//
BUL GE
          513
                      1 *EL NO .... S-STRAIN .... TOTAL ... THE-STRAIN .... TOTAL ... THI-STE
BUL GE
          514
                   2AIN.....*TOTAL....EF-STRAIN.....*TOTAL....*)
1027 FOPMAT(///*SL. NO....S-STPESS....THE-STFFSS....EF-STPESS....*)
1030 FOFMAT(/I7.3F10.5)
1031 FORMAT(* GEOMETRY OF PROFILE*//
BUL GE
          515
PUL GF
          516
BULGE
          517
BUL GE
          518
                   1 *EL NO.....ANGLE.....THICKNESS.....*)
1028 FORMAT(* FORCE AT THIS STEP IS *,F20.7)
          519
9UL GE
BULGE
          320
                   2223 FORMAT (F20 .7)
BULGE
          521
                 c
          522
AUL GE
PUL GE
          523
                         RETURN
BULGE
          524
                         END
PULGE
                          SUBROUTINE STIFF (P.7. UF. UZ. CODE. SLOP. YY. YX. SPHI. CPHI. DL. EPS.
BULGE
          527
                        1 THICK . A . P. NG)
          528
BUL GE
                 C
                         COMMON/GENCON/NUMNP, NUMEL, HED(12), DLL, NEO, NFOFM, YIELD, TEST, I TEF.
BUL GE
          530
                        INREAD, NEUNCH, NPRINT, RVALUE, T, MEAND, PNRAC, PACTUS, PPES, DPRES COMMON/STEMAT/H(6), P(6,6), TEX, TEY, TEZ, THKL
          531
PUL GE
BULGE
          532
                         COMMON/CONGUAC/SS(A), WT(A), D(2,2), SOFT1
PUL GE
          533
                 C
BULGE
          534
                         DIMENSION R(1), Z(1), COCE(1), UP(1), UZ(1), SLOP(1), R(1), A(NG.1).
BULGE
          535
                        1 EPS(4.1),ZZ(2),UU(6),YY(1),YX(1),THICK(1),DL(1),SPHI(1),CPHI(1)
PULCE
          536
                        2.RR (2)
BULGE
                 c
PULGE
          538
                 c
                         00 50 N=1. NEG
BULGE
          539
                         9(N)=0.
BUL GE
          540
BULCE
          541
                         99 50 M=1.MBAND
                     50 A(N.M)=0.
          542
BULGE
SUL GE
          543
                 C
RULGE
          544
                         WT (1)=0.3478548451
          545
                         WT(2) =0.6521451549
BULGE
AUL GE
          546
                         WT(3)=WT(1)
          547
RULGE
                         WT (4)=WT (2)
BUL GE
          548
                 C
PULGE
          549
                 C
          550
                         DC 1000 N=1 . NUMEL
BULGE
BUL GF
BULGE
          552
                         DLL=DL(N)
BUL GF
          553
                         SPH=SPHI(N)
          554
                          CPF=CPFI(N)
PULGE
BULGE
          545
                         RP(1)=F(N)
          556
                         27(1)=7(N)
PULGE
                          FF (2) = F (NP1)
AUL GE
          557
BUL GF
          558
                         UU( 1) =UP(N)
EUL GE
          559
                         UU(2)=U7(N)
BULGE
          560
                         UU(3) =SLOP(N)
PUL CE
          561
                         UU(4) =UR(NP1)
                         UU(5)=UZ(NP1)
BULGE
          562
PUL GE
          553
                         UU( 6) =SLCP(NP1)
PUL GE
          564
                          THKL=THICK(N) +DLL
BULGE
                          27(2)=7(NP1)
PUL CE
          566
                         YG= YX(N)
BULGE
          557
                          YHEYY (N)
AUL GF
          568
                 C
PULCE
                         CALL QUAD(RR.ZZ.UL.DLL.SPH.CPH.YG.YH)
          569
PULSE
          570
PULGE
          571
572
PULGE
                 CHERRES SERVICE ASSEMBLY OPERATION. RECAUSE WATRIX A IS SYMMETRIC
PUL GE
PUL CE
          574
```

```
PULGE
                       CHLY HOPER HALF OF THE MATEIX IS CREATED. AND THE STOPAGE FOR
                C WATRIX A 15 A SQUARE APRAY MECAUSE OF MANDED SYMMETRIC PROPERTY
BUL GF
         576
         577
BUL GE
PULGE
         578
                C
BUL GE
         579
                       DO 200 1=1. 6
                       11=A+3 - 3 + 1
9(11)=9(11)+H(1)
         580
BULGE
BUL GE
         561
BULGE
         552
                       CO 200 J=1. 6
RUL GE
                C
BUL GE
         584
                       JJ= N=3 - 3 + J - II + 1
I=(JJ .LT. 1) GO TO 20C
A(II,JJ)=A(II,JJ)+P(I,J)
BUL GE
         585
RUL GE
         546
PULGE
         587
BULGE
         588
                  200 CONTINUE
PUL GE
         589
                c
RULGE
         590
                 1000 CENTINUE
BUL GE
         591
PULGE
         592
BULGE
         593
594
                 1001 FORMAT(///.* THE CIAGCNAL VECTOR OF MATPIX OF STIFFNESS*/)
                 1002 FOPMAT( 12E 11.3)
PUL GE
RUL GE
         595
                 1005 FORMAT (// 29H ELEMENT WITH NEGATIVE AREA =. 15)
RUL GE
         596
BUL GE
         597
                       RETURN
RULGE
         598
                       ENC
                       SUPPOIT INE GUAD (RF. ZZ. UU. DLL. SPF. CPH. 52.51)
PULGE
         600
BUL GE
         601
                c
BUL CE
         602
                       COMMON/ISOTPY/RVAL 1
                       COMMON/STEMAT/H(6),P(6,6),TEX,TEY,TEZ,THKL
BUL GE
         503
BUL GE
         604
                       COMMON/CONQUAC/SS(4) . WT(4) , 0(2.2) , SOFT1
                       COMMON/FORVE/FACT. DFACT
BUL GE
         605
BUL GE
         606
                C
                       DIMENSION RR(2).77(2).UU(6).P(2.6).XX(6.6).RZERC(6).CP(2.6)
DIMENSION RA(6.6).RP(6)
PUL CE
         607
BULGE
         508
BUL GE
         409
                c
PULGE
         610
                c
                       RC = ( QR(1)+RP(2) )/2.
BUL GE
         611
BULGE
         612
                c
BULGE
         613
                       00 2 1=1.6
                       R8(1)=0.
BULGE
         614
BULGE
         615
                       H(1)=0.
         616
                       DO 2 J=1.6
BULGE
PUL GE
RULGE
         618
                     2 -(1.1)=0.
BULGE
         619
PULGE
         620
RULGE
         621
                c
                       RVALLE=RVAL 1
AUL CE
         622
BUL GE
                       DZ=2Z(2)-2Z(1)
         523
BULGE
         424
                       DR=FR(1)-RR(2)
                       CU=UU(1)-UU(4)
BULGE
         625
RULGE
         626
                       DW=UU(5)-UU(2)
PUL CE
         627
                       AU=LU(1)+UU(4)
         629
                       AR=RR(1)+RR(2)
BULGE
BUL GE
         629
BULCE
         530
                C
BULGE
                       C1 = 2 . * D9/OLL/CLL
                       C2=2.*9U/DLL/DLL
C3=2.*07/DLL/DLL
RUL GE
         632
PULGE
         633
                       C4=2.*D*/DLL/CLL
BUL GE
BUL GE
         635
                       C5= AU/AR/2.
                       C6=1.+DR*C2+C7*C4+(CU*DU+DW+DW)/DLL/DLL
BULGE
         636
BUL GE
         637
                       C7=2. /DLL /DLL
PULGE
         538
                       C8=2./AR/AR
PULGE
         639
                       C9=1./SQFT(C6)/2.
PUL GF
         640
                       C10=C9/C6
RULGE
         641
                       C11=C1+C2
BUL GE
                       C12=C3+C4
         542
         643
PUL GE
               c
BULGE
PUL GE
         645
                       DESI=SOPT(CE)
         646
AUL GE
                       DET1=2.+C5+1.
PUL GE
                C
BULGE
         648
                       E1=C9*C11/DES1
                       E2 =- C9 + C12/DES1
BULGE
         649
BUL GE
         650
         651
BULGE
                       E4 =- 52
AUL GE
                       E5=1. /AG/DET1
```

E6= (-C1C*C11*C11/2.+C\$*C7)/9E51-E1*F1

PULGE

AULGE

654

57 =-E6

```
ER=C10*C11*C12/2./0551-E1#E2
AUL CE
BULGE
        556
                     E9 = - E4
        557
AUL GF
                     E10=EA
                     E11=(-C10*C12*C12/2.+C5*C71/DE51-E2*F2
BUL GE
        658
PULGE
        659
                     E12=-E5#E5
BUL CE
        660
              C
PULGE
        561
              c
AUL GF
        662
                     DES=ALOG(DESI)
                     DET=AL DG(DET1)
PUL CF
        663
              PULGE
ALL GE
        655
                     DESEMBRIDIAN STRAIN INCREMENT
              c
                     DET - CIR CUMPERENTIAL STEATH INCFEMENT
PULGE
        556
                     COMPUTATION OF EFFECTIVE STRAIN INCREMENT
E1=DEPIVATIVE OF MEDIDIAN STRAIN INCREMENT WITH PESFECT TO UU(1)
AUL GE
        657
BUL CE
        658
        559
                       =D(DES)/C(UU(1))
BUL GE
AUL GE
        670
                     =2=0(DES)/D(UL(2))
              c
                     E3=C(DES)/D(UU(4))
BULGE
        671
AUL GE
        572
                     E4=0(DE5)/D(UL(5))
AUL CE
        673
              000
                     =5=D(DET)/D(UL(1))
                     E6=C(E1 1/C(UU(1 ))
        674
AUL GE
BUL GE
        675
                     E7=D(E1)/D(UU(4))
PULGE
        676
              C
                     E8=C(E1)/D(UU(2))
                     E9=D(E3)/D(UU(21)
RULGE
        677
PUL CF
        678
                     E10=0(E4)/D(UU( 5))
AUL GE
        679
                     E11=0(55)/C(UU(2))
                                           ****************
RULGE
        680
PULSE
        681
PUL GF
        682
              c
BUL CF
                     PVP1=RVALUE+1.
RULGE
        594
                     RVF2=5 QFT (2. +FV ALUE+1.)
        685
                     PVP3=PVP1/RVP2
BUL GE
BULGE
        686
                     RVP4=2. *PVALUE/RVP1
BULGE
        687
        698
PUL GE
              C*****
              C FFFECTIVE STRAIN
AULGE
        689
BUL GE
        590
        591
BULGE
AULĢE
        692
                     FF S=DFS*DFS+DFT*DFT+RVE4*DFS*CFT
                     EFS1=PVP3#SQRT(FFS)
PUL CE
        693
        6 94
                     EFS2=RVF3/SQRT(EFS)/2
AUL GE
PUL GE
        695
                     FF CT == PVP T/FF C/ COFT(FF C)/4.
                     D1= (2.*DES+RVP4+DET )*E1+(2.*DET+RVP4*DES)*E5
        696
BULGE
BULGE
        697
                     D2=(2.*DES+RVF4+DET)*E2
                     D3=(2.*DES+PVP4+DET)*E3+(2.*DET+FVP4*DES)*E5
PUL CE
        498
                     04=(2.+DES+RVF4+DET)+E4
        699
BULGE
BUL GE
        700
              C
BULGE
        701
                     F1=EFS2+C1
                     F2=EFS2+C2
RULGE
        702
AUL GE
        703
                     F3=EF52*D3
                     F4 = EFS 2 + C4.
AUL GE
        704
BULGE
        705
                     F11=EF53*D1*D1+EF52*((2.*DE5+FV04*DET)*EF+(2.*DET+CVPA*DES)*E12
PULCE
        706
                    1+(2.*E1+PVP4*E5)*E1+(2.*E5+PVP4*E1)*E5)
F12=EF57*C1*D2+EF52*((2.*DE5+CVP4*DET)*E8+(2.*E1+FVP4*E5)*E2)
        707
BULGE
                     F13=EF53*D1*D3+EF52*((2.*DF5+RVP4*DET)*F7+(2.*E3+PVP4*F5)*E1
RUL GE
        709
                    1+(2.*E5+RVP4*E3)*E5+(2.*DET+RVP4*DES)*E12)
F14=EF53*D1*D4+EF52*((2.*DE5+RVP4*DE5)*E12)*E3+(2.*E1+RVP4*F5)*E4)
PUL GE
        709
        710
BUL GE
                     F22=EF53+D2+D2+EF52+((2.+DE5+RVP4+DFT)+E11+2.*E2*E2)
BUL GE
                     F23=EFS3*D2*D3+EFS2*((2.*DES+EVP4*DET)*E0+(2.*E3+RVP4*F51*E2)
RULGE
        712
                     F24=EF53*D2*D4+EF52*(-(2.*DE5+RV04*PET)*E11+2.*E4*52)
BUL GE
BULGE
        714
                     F33=EFS3+D3+D3+EFS2+((2.+DES+FVPA+DET)+E6+(2.+E3+FVP4+E5)+E3+(
                    12. *E5+PVP4*E31*E5+(2. *DET+RVP4 *DES1*E121
AUL GE
        715
716
                     F34=EFS3+D3+D4+EF52+(12.*DE S+RVP4*DET)+E10+(2.*E3+PVP4*E5)+E4)
RUL GE
BULGE
        717
                     F44 = EFS3 + D4 + D4 + EFS2 + ((2. + DES + FV P4 + CET ) + E11+2. + E4 + E4)
BUL GE
        718
        719
BULGE
BUL GF
        720
              BUL GE
        721
AULGE
                     FI=DERIVATIVE OF EFFECTIVE STRAIN INCFEMENT WITH RESPECT TO UU(1)
                     F2=BITH RESPECT TC UU(2)
F3=WITH PESPECT TC UU(4)
F4=BITH RESPECT TC UU(5)
BUL GE
        723
        724
BULGE
BUL GE
PUL GE
        726
              C
                     F11=D(F1)/D(UU(1))
        727
              c
                     F12=D(F1)/C(UU(2))
BULGE
PUL GE
                     F13=D(F1)/D(UL(4))
                     F14=D(F1)/C(UU(5))
PULGE
        729
                     F22=D(F2)/D(UU(2))
BULGE
        730
PUL GE
        731
                     F23=0(F2)/D(UL(4))
                     F24=D(F2)/D(UU(5))
BULGE
        732
              C
BUL GE
        733
                     F33=D(F3)/D(LL(4))
        734
735
PUL GE
              c
                     F34=D(F31/0(UU(511
BULGE
                     F44=9(F4)/D(UU(5))
              PUL SE
        737
738
QULGE
              C
                     P(1.1)=((51+52+EF$11+F11+52+F1+F1)+DC+THKL
AUL GE
                     P(1.2)=((S1+S2*FF51)*F12+S2*F2*F1)*FC*THKL
PULGE
```

FORESE

```
PULGE
                    P(1,4)=((51+52*FF51)*F13+52*F1*F3)*FC*THKL
PUL CE
        741
                    P(1,5)=((S1+S2*EF51)#F14+52*F1*F4)*PC*THKL
                    P(2,2)=((S1+S2*EFS1)*F22+S2*F2*F2)*P(*THKL
PUL GE
        742
AUL GE
        743
                    P(2,4)=((51+52*EF51)*F23+52*F2*F3)*FC*THKL
PUL GE
        744
                    P(2.5)=((51+52*FF51) +F 24+52*F 2*F4) +FC*THKL
                    D(4,4)=((S1+S2*EFS1)*F33+S2*F7*F7)*RC*THKL
        745
BULGE
PUL GE
        746
                    D(4,5)=(($1+52*EF51)*F34+52*F3*F4)*F(*THKL
BULGE
        747
                    D(5.5)=((S1+S2*EFS1)*F44+S2*F4*F4)*F(*THKL
        749
                    P(2,1)=P(1,2)
AUL GF
RUL CE
        749
                    D(4.1)=D(1.4)
                    F(4,2) +F(2,4)
AULGE
        750
        751
                    0(5,1)=0(1.5)
PIL CF
PULGE
        752
                    P(5.2)=P(2.5)
        753
                    P(5.4) = P(4.5)
BULGE
BULCE
              C
BULSE
        755
756
                    H(1) =- (51+52*FFS1)*F1*AC*THKL
                    H( 2)=-( S1+52*EF S1 )*F2*EC*THKL
AUL GE
PUL GE
        757
                    H(4)=-(51+52*5F51)*F3*FC*THKL
                    H(5)=-(S1+S2*EFS1)*F4*CC*THKL
        758
750
PUL GF
PUL GE
RULGE
        750
        761
              C###
                   **************************
AUL GE
              C ENCLOSED VOLUME CHANGE
BUL GE
        762
        763
PUL GF
        764
BUL GE
              c
        765
766
PUL GE
                    RK1 =DLL *CPH+CW
                    RUL1=PD(1)+UU(1)
ALM GF
BULGE
        757
                    RUU2=20 (2)+UU(4)
PULGE
        758
769
                    PK2 =2 . * FUU1 + PUU?
PUL CF
        770
                    RA(1.1)=PK1/3.
PULGE
        771
772
BUL GF
                    RA(1.2) =-PK2/6.
                    RA(1.4)=PK1/6.
BUL GE
BULGE
        773
                    PA(1.5) = PK2/6.
        774
775
BUL CE
                    RA(2.2)=C.
                    7A(2,4) =- RK3/6.
BULGE
BULGE
        775
                    RA(2.5)=0.
                    RA(A.4)=RK1/3.
PULGE
        777
        778
                    94 (4.51=RK3/6.
PULGE
BUL GF
        779
                    RA(5.5)=C.
                    98(1)=RK2*RK1/6.
BUL GE
        780
BUL GE
        791
                    RR(4) = PK 3*PK1/6.
PULGE
        782
                    R9(2)=-(PUU1*RUU1+FUU2*RUU2+PUU1*FUU2)/6.
        783
                    58(5) == RB(2)
BULGE
        784
                    RA(2.1)=RA(1.2)
PUL CF
PUL GE
        785
                    RA(4.1)=RA(1.4)
        795
                    RA(4.2) =FA(2.4)
PUL GF
                    RA(5.1)=PA(1.5)
BULCE
BULGE
        789
790
                    RA(5.2) = PA(2.5)
                    RA(5,4)=RA(4,5)
BUL CE
PULSE
        790
              c
BUL SE
        791
              C
        792
                    DO 109 I=1.6
BULCE
        793
RULGE
                    H(1)=H(1)+(FACT+CFACT)+P9(1)
                    00 108 J=1.6
BUL GE
                    P(1,J)=P(1,J)-(FACT+DFACT)*RA(1,J)
AUL GE
        775
BUL GE
        796
                108 CONTINUE
PUL CF
        797
        798
PULGE
AIL GE
        799
                 71 CONTINUE
        900
                    RETURN
BULGE
BULGE
        201
PULGE
        803
                    SUBSCUTINE CONCEN(A.B.NEG.MBAND.N.U)
        904
PUL GE
BULGF
        905
              c
AUL GE
        806
        807
BUL GF
PUL GE
        505
PUL GF
        809
BULGE
        910
                    DIMENSION BINEO 1.4 (NEQ. 1)
PULGE.
        911
              C
                    DO 250 W=2.MBAND
                                                                                        MCD
        912
BUL GE
RULGE
        813
                    K=N-M+1
                                                                                        MCD
                                                                                        MOD
                                                                                               5
                1F(K) 235,235,730
230 B(K)=P(K)-A(K,W)+U
BUL GE
        914
                                                                                        MCC
        915
PUL CE
                A(K,M)=0.0
235 K=N+M-1
BULGE
                                                                                        MOD
                                                                                        400
BUL GE
BUL GE
        917
                    IF (NEG-K) 250,240,240
                                                                                        MOD
                                                                                               9
        818
                240 B(K) =B(K)-A(K,WI*U
BUL GE
        819
                                                                                        MDD
                                                                                              10
AUL GE
                    A(N.M)=0.0
        950
```

```
BULGE
          921
                    250 CONTINUE
                                                                                                           MOD
          822
PUL GE
                         A(N.1)=1.0
                                                                                                           -00
PULGE
          923
                                                                                                           MOD
          924
BULGE
                                                                                                           MOD
SUL SE
          825
                         RETURN
                                                                                                           MCD
PULGE
                         END
                                                                                                           MOD
                         SUPPOUT INE MODIFY(CCCE.A.B. NUMNF.NEG.MRAND)
PULGE
          829
PUL GE
          829
                 c
PUL GE
          930
                         DIMENSION CODE(1).A(NEG.1).9(1)
          831
BUL GE
          932
          933
PUL GE
                         CO 121 I=1. NUMNP
BUL GE
                         17=1L-1
1F=12-1
PUL CE
          935
BULGE
          836
PUL GE
                         IF (C.EG. 1.) GO TO 101
IF (C.EG. 2.) GC TC 102
IF (C.EG. 3.) GC TO 1C3
PULGE
          838
          839
BULGE
PUL GE
          840
                        CALL COND N(A, P, NEC. MPAND, IL.O.)
GO TO 121
RULGE
          841
          842
BULGE
PULGE
          843
PULGE
          944
                   101 CONTINUE
                        CALL CONDEN(A.B.NEO.MPAND.IR.C.)
CALL CONDEN(A.B.NEO.MPAND.IL.O.)
BUL CE
BULGE
          846
          947
                         GO TO 121
BUL GE
BULGE
          849
BULGE
                   102 CONTINUE
                        CALL CONDEN(A,R.NEG,MHAND.IZ.C.)
CALL CONDEN(A,B.NEG,MBAND.IL.C.)
BUL GE
BULGE
          851
BUL GE
          852
                         GO TO 121
          953
PULCE
                 C
BULGE
          854
                   103 CONTINUE
                        CALL CONDEN(A.R.NEG.WRAND.IF.C.)
CALL CONDEN(A.B.NEG.MBAND.I7.0.)
PUL GE
          855
          956
BUL GE
          857
                         CALL CONDENTA . P. NEG . WEARD . IL . O . 1
                   121 CONTINUE
PULGE
         858
BULGE
          859
PUL GE
          860
                         RETURN
PULGE
          951
                         ENC
          863
                         SURPDUTINE TRIA(NN, WM.A)
BULGE
          854
          865
BULGE
BULGE
          866
                        TRIANGULIZATION OF GAUSSIAN ELIMINATION FOR THE SOLUTION
                        OF BANDED SYMPETRIC MATEIX
AUL GE
          867
PUL GE
          868
BULSE
         869
         870
                        DIMENSION A(NA.1)
BUL GE
BUL GE
                 C
          872
BULGE
                         N=9
PUL GE
                  100 N=N+1
BULGE
          874
                         IF (N.EQ.NN) RETURN
BUL GE
          875
                         IF(A(N.1).NE.C.) GC TC 150
                         GC TO 100
BULGE
BUL GE
          877
                 C
PUL GE
BUL GE
          878
                   150 I=N
          979
                         UB=NINO (NM. NN-N+1)
RUL GF
          980
                 c
                         00 260 L=2.MB
BUL GE
         881
          P 22
PULGE
PUL GE
          883
                         C=A(N.L1/A(N.1)
                         IF(C.50.0.0)CC TO 260
BULGE
          -
BUL GE
          985
                         J=0
PULGE
          886
                         CO 251 K=L.M9
          -87
                         J=J+1
BULGE
PUL GE
          -
                        A(1.J)=A(1.J)-C*A(N.K)
RULGE
          ARG
                         ACN.LIEC
                       CONTINUE
          890
BUL GE
                  250
PULGE
          991
                         GC TC 100
RULGE
          292
PUL GE
                 c
BULGE
          994
                         ENC
```

14

16

```
SUPRDUTINE BACKS(NA.MM.A.B)
PUL CE
BULGE
        897
               c
PUL GF
        898
PUL GE
         990
BULGE
        900
                     BACK SUBSTITUTION FOR SCLUTION OF PANDED SYMMETRIC MATRIX
               C*******
BUL GF
        901
RULGE
        902
               C
AUL GE
        903
                     DIMENSION A(1),F(1)
BULGE
        904
               c
BULGE
                     ---
        905
PULCE
         906
                     N=0
               270 N=N+1
C=R(N)
BULGE
        907
BUL GF
        900
PULGE
        909
                     IF(A(N) .NE .C.()B(N)=P(N)/A(N)
RULGE
        910
                     IFIN.EC. NNIGO TC 300
PUL CE
        911
                     IL=N+1
                     IHENINO (NN. N+WMM)
BULGE
        912
AUL GE
        913
AULGE
        914
                     00 295 I=IL.IF
                     WEM+NN
BULGE
        915
PUL CE
        916
               285
                     R( | )=R( | )-A( W)+C
BULGE
        917
                     GC TO 270
BUL GE
        918
              C
BULGE
        919
               300 IL=N
BULGE
                     N=N-1
BUL GE
        921
                     IF(N.FQ.Q) RETURN
BULGE
        922
                     IHENING (NN. NOMMM)
RULGE
        923
                     M=N
PULGE
        924
                     00 400 I=IL.IF
                     MENANN
BULGE
        925
               400 B(N)=B(N)-A(M)+B(1)
BUL GE
        926
BULGE
        927
                     GC TC 300
SUL GE
        928
              c
                     ENO
PUL CE
        929
BUL GE
                     SURROUTINE HARC(EFS.Y)
        931
        932
BULGE
        933
              C WORKHAPDENING CHAPACTERISTIC CURVE
BUL GE
        234
        735
BULGE
BUL GF
        936
              C
BUL GE
        937
                     COMMON/MATERL /Y VALUE . PRESTN, EXFAT . PRESTS
              c
BULGE
        STR
        939
                     Y=YVALUE*(PRESTN+EPS)**EXPNT+PRESTS
BUL GF
PULGE
               C
BUL GE
        941
                     RETURN
BULGE
        942
                     ENC
BUL GE
        944
                     SUBSOUTINE HARDS(EPS.Y)
PULGE
        945
BULGE
        946
BUL CE
        947
                     COMPUTE WORK HARDENING RATE
        948
              C####
BULGE
        949
              c
PULGE
        950
                     COMMON/MATERL/YVALUE, PRESTN, EXFNT, PRESTS
              c
PULGE
        951
PUL GE
        952
                     Y=EXPNT*YVALUE*(DDE STN+EPS)**(F XPNT-1.1
BULGE
        953
               c
                     RETLON
PULGE
        954
PUL GE
        955
                     ENC
```

APPENDIX C

PROGRAM FOR THE ANALYSIS OF PUNCH STRETCHING

This program is for the analysis of the stretching of a sheet with hemispherical punch, where the die profile is neglected.

- (I) Data card preparation
 - 1. Read HED (A 12)
 - 2. Read RVALUE, T, ACOEF (5F 10.0)
 - 3. Read ITER, NREAD, ITCONT, NFORM, NPUNCH, NPRINT, FLIMIT (615, F10.0)
 - 4. Read NUMNP (615)
 - 5. Read PNRAD, RADIUS, FRITN (4F 10.0)

PNRAD: Radius of the hemispherical punch

RADIUS: Radius of the blank

FRITN: Friction coefficient between the punch head and the blank

- 6. Read YVALUE, PRESTN, EXPNT, PRESTS (4F 10.0)
- 7. Read ECONST, TDIST (4F 10.0)

ECONST: Step size in terms of the maximum magnitude of the effective strain increment. To start with, set this 0.04

TDIST: Criterion distance of the contact of the sheet with the punch head. To start with, set this 0.008

- 8. Read N, CODE(N), R(N), Z(N), UR(N), UZ(N), SLOP(N), (I5, F5.0, 5F 10.0) Code (N) = 4.0 for the contact zone of the sheet with the punch head
- 9. If NREAD = 1, the new input data is to be placed behind the nodal information card

```
STRCH
                     PROGRAM STRCH (INPUT. DUTPUT. TAPE 5= INPUT. TAPE 6=CUTPUT. PUNCH)
STRCH
STRCH
                     THIS PROGRAM IS FOR THE ANALYSIS OF THE PUNCH STRETCHING, RYJ.KIM HERE. THE RADIUS OF THE DIS PROFILE IS NEGLECTED.
STRCH
STRCH
STRCH
STRCH
STRCH
                     COMMON/GENCON/NUMMF.NUMEL.HED(12).DLL.NEG.NFORM.YIELD.TEST.ITER.
STRCH
                    INREAD, NPUNCH, MERINT, EVALUE, T. MRAND, PNEAD, PADTUS, FRITN.
                    SECONST. FNHED . TO I ST
STRCH
         10
STRCH
                     COMMON/MATERL/YVALUE, PRESTN, EXENT, PRESTS
                     COMMON/ISO/REVAL
STRCH
         12
STRCH
         13
STRCH
               PROGRAM IS FOR CONTROLLING THE DIMENSION OF THE COMPLETE PROGRAM. ITS PUPPOSE IS TO PREVENT ASSIGNING A LARGEP THAN
STRCH
STRCH
         15
         15
STRCH
         17
                     NECESSARY DIMENSION FOR ANY ARRAY THROUGH THE USE OF THE
STRCH
                     FOLLOWING STATEMENT
STOCH
         10
               STRCH
         20
STRCH
                     COMMON A(5000)
         21
STRCH
         22
STRCH
               23
               C NEIGLO IS THE DIMENSION OF AREAY A. ITS VALUE CAN BE DETERMINED OF PRECISELY BY FUNNING THE PROGRAM CHCC.
STRCH
STOCH
         25
               STRCH
         26
STRCH
         27
STRCH
                     NF IELD=5000
STRCH
         20
STRCH
         30
STRCH
         31
STRCH
               《新春 花香香香草 名於 表生 建雄物 医食物 建苯甲基 医水子 医水子 医水子 医多种 医多种 医皮肤 医生物 计 电电子 化二甲基 化二甲基 化二甲基 化二甲基
         32
STRCH
         33
                    PEAD THE INPUT DATA CONTROL CAPDS
STPCH
         34
STECH
         35
STRCH
         36
         37
38
STRCH
                     9EAD(5.1000) FEC
                     READ(5,1004) EVALUE, T. ACOFF
STPCH
STRCH
                     READ(5, 1003) ITER. NREAD, ITCONT, NFCRM, NOUNCH, MPFINT, FLIMIT
         39
STRCH
         40
                     READ(5,1003) NUMNE
                     REAC(5.1004) PHRAC . PADILS . FRITH
STRCH
         41
STRCH
         42
                     REAC(5,1004) YVALUE . PRESTN. EXFNT. PRESTS
STRCH
                     READ(5,1004) FCCNST.TCIST
STRCH
         44
STRCH
         45
STRCH
               STRCH
         47
                     HED=CUTPUT TITLE
                     RVALUE = VALUE OF THE ANISCTROPY PARAMETER
STRCH
         4.0
                     ACCEPTACCELEFATING OF DECELERATING CONFICIENT OF CONVERGENCE
NEEAD=0. IF TO BYPASS THE REALING STATEMENT IN SUPPOUTINF PLAST
ITCONT=0. IF COMPUTATION STARTS AT THE VERY REGGINNING AND FIRST/
SECOND STERS ARE INCLUDED IN THE STERS TO BE COMPUTED
STECH
         49
STRCH
         50
STRCH
         51
52
STRCH
                            =1. OTHEPNISE
STOCH
                     THIS INCEX IS RELATED TO THE DETERMINATION OF STEP SIZE NEGRM=NUMBER OF STEPS ASSIGNED PER FUN NPUNCH=1. IF CATA ARE TO BE PUNCHED
STPCH
         54
STRCH
         55
STRCH
         56
STRCH
         57
                           =0 . OTHERWISE
                     FLIMIT=VALUE OF (ERROR NORM)/(SOLUTION NORM) REQUIRED
STRCH
         58
                     FOR CONVERGENCE
         59
STPCH
                     APPINTEL. IF ACOAL FOIRT DATA ARE TO BE PRINTED
STRCH
         60
STOCH
                           = C. OTHERWISE
         61
                     NUMBER OF NODAL POINTS
PHRADERADIUS OF HEMISPHERICAL FUNCH HEA
STRCH
         62
STRCH
         63
STRCH
                     RACTUS=RADIUS OF THE BLANK
                     EPITH EFRICTICA COEFFICIENT METWEEN BLANK AND PUNCH
STRCH
         65
                     ECONSTESTED SIZE IN MAXIMUM EFFECTIVE STEATH INCREMENT
STRCH
         66
         67
STPCH
STRCH
                     YVALUE, PRESTN, EXPNT, PRESTS APE TO EXPRESS THE WORKHARDENING CHARACTERISTICS OF THE BLANK
STRCH
         69
STRCH
         70
STRCH
         71
                     STRESS=YVALUE*(PRESTN+STRAIN)**5 XFNT+DRESTS
         72
73
74
STECH
                     NEGENUMBER OF EQUATIONS TO BE SOLVED
STPCH
                     NUMEL = NUMPER CF. ELEMENTS
STRCH
STRCH
         75
76
                     MRAND =BAND WICTH
                     **********************
STRCH
               C****
```

STRCH

```
WOITE (6.2000) HET . NUMBE . NUMEL
STRCH
                                         CALL HARDIC .. VIELD
STRCH
STRCH
                 161
                                         WEITE (6.2010) YTELF
                                          WPITE(6,1009) ITER
STRCH
                162
                163
STOCH
                164
                             STRCH
                                          ATAC THISG JACCH TO THISG ONE DATE
STRCH
                             166
STPCH
                 167
STRCH
                168
STECH
                 160
                                         IF (NPRINT. EG. C) GC TO 60
STRCH
                 170
                                         WPITE (6.1114)
                                          WRITE (6.2004)
STRCH
                172
STECH
                                 60 READ (5.1002) N.CCDF(N).F(N).7(N).UP(N).UZ(N).SLCF(N)
STRCH
 STECH
                 174
                                                                                                                                                                                  MA 140036
                175
STRCH
                                          7 X = N-L
                                                                                                                                                                                   WATNOD 37
STRCH
                                          IF(L .EC. 0) GC TC 70
STRCH
                 177
                                         DP=(P(N)-R(L))/7X
                                                                                                                                                                                   MAINODIS
                                         07=(7(N)-Z(L))/7X
STRCH
                178
                                                                                                                                                                                   WA! NOC35
                                          DUP=(US(N)-UF(L))/7X
STRCH
STRCH
                 180
                                          DU7=(U7(N)-U7(L))/7X
STRCH
                                         DS=(SLCF(N)-SLCF(L))/7x
                 181
STRCH
                                 70 L=L+1
STRCH
                183
                                                                                                                                                                                   W4 1 NO 041
                                         IF(N-L) 100,90.80
STPCH
STRCH
                 185
                                   90 CODE(L)=0.0
STRCH
                                                                                                                                                                                   MAINODA3
                 196
                                          3(L)=P(L-1)+DF
STPCH
                                                                                                                                                                                   WA INCOSS
                199
STRCH
                                         SLOP(L)=SLOP(L-1)+DS
STRCH
                                         Z(L)=7(L-1)+DZ
 STRCH
                 190
                                         UR(L)=UR(L-1)+CUP
STRCH
                191
                                         U2(L)=U2(L-1)+CUZ
STRCH
                                                                                                                                                                                   WA INDOAS
                192
STPCH
                193
                                 90 IF (NUMNE-N) 100.110.50
STRCH
                1 54
STRCH
                195
STPCH
                 196
                               100 WRITE (6.2009) N
                                                                                                                                                                                   MATNODES
                                                                                                                                                                                   MA INDOES
STRCH
                197
                                        CALL EXIT
STRCH
                1 98
STRCH
                199
                               110 CONTINUE
                                                                                                                                                                                   MATNOCEA
                                         IF(NPRINT.EG. () 60 TO 120
STECH
                500
STECH
                                          WPITE (5.200?) (K,CODE(K),P(K),7(K),UP(K),UZ(K),SLOP(K),K=1,NUMNP)
STRCH
                202
                                120 CONTINUE
STRCH
                             C
                203
STRCH
                                         NEC=3*NUNNP
                204
STOCH
                205
                                         WRITE(6,1122) NEO. MRAND
STOCH
               206
                207
STPCH
                              1002 FORMAT (15.F5.0.5F10.C)
                                                                                                                                                                                  MATNO122
STRCH
                208
                              1003 FORMAT(1615)
STRCH
                               1004 FCRMAT(18,2111,2F10.5)
                209
                              1005 FORMAT(215,4F10.0)
1006 FORMAT(// * THE NEDAL POINTS AT WHICH FORCE CALCULATIONS ARE DESIR
STECH
                210
STRCH
                211
STRCH
                212
                              1007 FORMAT(1H1,15%, 39H LINEARLY DISTRIBUTED BOUNDARY STRESSES/
1 / 60H NODE I NODE J PRESSURE I PRESSURE J SI
STRCH
                213
                                  1 / 60H NCDE I
2 14H SHEAR J)
STRCH
                214
STRCH
                               100P FCFWAT (219.4E15.5)
STRCH
                216
STRCH
                               1000 FORMATINAM MAXIMUM NUMPER OF ITERATIONS ALLOWED FOR EACH INCREMEN
                217
                              1000 FREWATICE/F MEAN TO THE STATE OF THE ST
STRCH
STRCH
                219
STOCH
                220
STRCH
                221
                              1 # EANDWITTH =#, 14
2 # CIAGONAL ELEMENTS =#, 14
2000 FORMAT (1H 1286/
1 30HO NUMBER OF NODAL FOINTS----- 13 /)
2 30HO NUMBER OF ELEMENTS----- 13 /)
STPCH
                222
STRCH
                223
STRCH
                224
                                                                                                                                                                                   MAINO127
                225
STRCH
                              2 30HO NUMBER CF ELEMENTS------ 13 /)
2002 FORMAT (112,F12.2,2F12.3,3E24.7)
2003 FORMAT (1113,416,1112)
2004 FORMAT (/ * NODAL POINT TYPE R-ORDINATE
1AD CP DISPLACEMENT 7 LCAD OR DISPLACEMENT
2005 FORMAT(//,*FORCES SPECIFIED AT NODAL POINT*.//.
1 * NODAL PT. ELEMENT1 ELEMENT2 PRESSURE
2006 FORMAT(// * INITIAL YIELD STRESS = *, F15.7//).
EFILEN
STRCH
                225
STRCH
                227
                                                                                                                                                                                  MAINO137
                                                                                                           TYPE R-ORDINATE Z-ORDINATE F LO
STRCH
                228
STRCH
                229
                                                                                                                                                       BETA-SLOPE *1
STRCH
                230
                                                                                                                                                       SHEART . /)
STRCH
                231
STECH
                232
                                                                                                                                                                                  MATNC145
STRCH
                233
                                         RETURN
STRCH
STRCH
               235
                                         END
                                          SURROUTINE PLAST (R. 7. UF. UZ. COCE, SLOP, YY, YX, SPHI, CPHI, DL, STS, TEPS,
STRCH
                                       1EPS, 9.A. THICK, ALPHA, GAMMA, ETA, FRNFCE, PHI, FF, TOUCH, UUP, UU7, 2NG, NEL, FLIMIT, ITCONT, ACOEF, NOEX)
STRCH
                238
STRCH
                239
```

```
STRCH
                                  COMMON/GENCON/NUMME.NUMEL.HED(12).CLL.NEG.NFORM.YIELD.TEST.ITER.
INPEAD.NPUNCH.NERINT.RVALUE.T.MPANT.PNFAD.PAD!US.FPITN.
STACH
              241
STRCH
              242
STRCH
              243
              244
STRCH
                         C PLAST IS THE CONTROLLING SUBROUTINE
STECH
               245
STRCH
              246
STRCH
              249
STRCH
                                    CCMMCN/CCNQUAC/SS(4).WT(4).D(2.2).SQET1
                                    DIMENSION P(1).Z(1).UR(1).UZ(1).CGDE(1).SLGP(1).YY(1).YX(1).
STRCH
                                   17EPS(4.1), 9(1), A(NO. 1), THICK(1), CPHI(1), SPHI(1), DL(1), FPS(4.1).
STRCH
               250
                                  24LPHA(1).GAMMA(1).ETA(1).FRNFCF(1).PHI(1).FF(1).TOUCH(1)
STRCH
              251
              252
                                   3,575(3,1),UUF(1),UU7(1)
STRCH
STOCH
                                    COMMON/ATQUEF/NTOUCH
STECH
              254
              255
STOCH
                         C********
                                    THE FIRST NODE IS LCCATED AT THE FIM OF THE BLANK AND THE POLE IS THE LAST NODE
STRCH
                         C
STOCH
              257
STRCH
              259
STACH
               259
STRCH
              260
STECH
              261
STRCH
              252
                                   ALLAS ARE CONSTANTS RELATED TO DETERMINATION OF ACCEF
                                    ATTAZ ARE CONSTANTS RELATED TO TERMINATION OF ACCEPTANCE O
STRCH
              263
                         c
STRCH
              264
STRCH
              265
                         c
                                    TCHCOF=0. IF ECUNCARY IS TO ADVANCE
STRCH
              266
                         c
STRCH
               257
                                               =1. OTHERWISE
STRCH
              268
                         C*******************
                                                                           ***************************
STRCH
              269
STRCH
              270
STRCH
              271
                                    PNHED=7(NUMNE)
STRCH
              272
                                    A2=2.
STRCH
              273
                                    NCHECK = NUMEL / 10
STRCH
              274
STRCH
                                    NUM 1=NUMNP-1
STRCH
              276
                                    NTCUCH=NUMNP
STRCH
              277
                                    TCHCDF=0.0
STRCH
                                    NSTCP=0
STRCH
              279
                                    $5(1) =0.8611363116
              290
STRCH
                                    55(2)=0.3355810436
STOCH
STRCH
              282
                                    55(4)=-55(2)
STRCH
              293
                        c
STRCH
              284
                                    DG 442 N=1 . NUMEL
                                    FRNFCE (N)=0.C
              295
296
STRCH
STRCH
                                    THICK (N)=T
STRCH
STRCH
              288
                            442 TEPS(1.N)=0.
STRCH
                         C****************
              289
                        STPCH
STRCH
              291
STRCH
              292
STRCH
              293
                         c
STRCH
              254
                                    DO 450 NEL -NUVEL
                            450 TEPS(4.N)=0.0001
STRCH
              295
STPCH
              295
                        c
STRCH
              297
                                    FRNECE(NUMNE) =0.003
STOCH
              298
                                    DPNSTR=C-1
STACH
              299
                                    DPN+ED=UZ(NUMAP)
STRCH
              300
                                   ESTAR=1.C
STACH
              301
STRCH
               302
                         IF THE COMPUTATION IS INTERRUPTED AFTER A NUMBER OF STEPS AND RESTARTED. THEN NECESSARY DATA NEED PF FEED
                        c
STPCH
              303
STRCH
              304
STRCH
              305
                         STRCH
              306
                         C
                                    IF (NREAD .LE. 0) GC TC 440
STRCH
               307
                                    READ(5.1017) (UR(1), UT(1), SLOD(1), I=1, NUMNF)
READ(5.1017) ( F(1), Z(1), I=1, NUMNF)
READ(5.1017) (TEPS(I,N),I=1,4), N=1, NUMEL)
READ(5.1017) (THICK(N),N=1,NUMEL)
STOCH
              308
STRCH
               309
STRCH
              310
STACH
              311
STRCH
                                    READ(5,2223) FAHED, ATCUCH, TCHCCF, SFACT
STOCH
              313
                                    READ(5.233)(FRNFCE(N).N=1.NUM1)
                                    REAC 233.ESTAG. CPASTE, CENHED
STRCH
              314
STPCH
                            440 CONTINUE
                         c
STRCH
              315
STRCH
               317
                                    NSTEP=0
STRCH
              318
                                    TOUCH2=TOIST
                          2100 NSTEP=NSTEP+1
STRCH
              319
               320
STRCH
              321
                         DPNHED*ASSIGNED INCREMENT OF PUNCH HEAR TRAVEL ESTAR*ACJUSTING FACTOR
STACH
               322
STRCH
                         STOCH
              324
```

```
STOCH
        325
STPCH
        324
                    PHI-ED=PHHEC+CONFEC
        327
STPCH
                    DO 445 1=1 . NUME
UR(1)=UR(1)#5 STAC
STRCH
        328
STRCH
                    UZ(1)=UZ(1)*EST AS
        329
STRCH
        330
                445 CONTINUE
STRCH
        331
STRCH
        132
                    TOUCH 3 = TOUCH2
STRCH
        333
                    00 247 I=1.NCHECK
               247 TCUCH([]=0.
STRCH
        334
STRCH
               SUNITHED 1018
STRCH
        ₹36
STRCH
        337
                    IF( TCHCCF .EG. 1.16C TC 210
                    NTOUCH=NTOUCH-1
STRCH
        334
STRCH
                    ATCF1=NTGUCH+1
        379
STECH
        340
                    FRNFCE(NTOUCH)=FRNFCE(NTCF1)/3.
                219 CONTINUE
STOCH
        341
STRCH
        142
                446 CONTINUE
STRCH
STRCH
        344
              UPDATING OF THE BOUNDARY CONDITION
STECH
        145
              C
STECH
        346
STACH
        347
STRCH
        -
STRCH
                    DE 100 1=2. NUM1
        340
                    CODE(1)=0.0
STECH
        350
               IF(I .GE. NTOUCHICODE(I)=4.0
STOCH
        351
STOCH
        352
                    CODE ( NUMNP) = 7.0
STRCH
        353
STRCH
        354
                    NTCHMI=NTOUCH-1
STOCH
        355
STACH
        356
STRCH
        157
                    COMPUTE THE YIELD STEESS AND THE WORKHARDENING RATE
STRCH
        354
STRC
        350
STOCIA
        360
                    DO 220 N=1 . NLWEL
                    CALL HAPD(TEPS(4.N).YY(N))
CALL HAPD2(TEFS(4.N).YX(N))
STRCH
        351
STRCH
        362
STOCH
        363
                22C CONTINUE
STOCH
        354
STECH
STRCH
        366
STRCH
        367
             C
STRCH
        368
                    *PITE(4.1007) NETEP
STRCH
        359
STRCH
        370
             C
STRCH
        771
                659 CONTINUE
STOCH
        372
STECH
        373
STOCH
              374
                    DETAIL OF THE PRESENT CENEIGUEATION
STRCH
        375
                    SPHI=SINE OF ANGLE PHI
STRCH
        376
                    CPHI=COSINE OF ANGLE PHI
STRCH
        377
              C
STRCH
                    DL=FLEMENT LENGTH
        379
              STRCH
STECH
        380
              C
STRCH
        301
                    DC 690 N=1. NUMEL
STRCH
        382
                    NF1 =N+1
STRCH
        383
                    DR=R(N)-R(NP11
STRCH
        384
                    CZ=Z(NP1)-Z(N)
                    DL (N) =SGFT (DR*DF+CZ*DZ)
STRCH
        385
STPCH
                    SPHI(N) =DR/DL(N)
        386
STRCH
        397
                    CPHI(N)=CZ/CL(N)
STRCH
        399
                    PHI (N) = ASIN(SFHI(N)) + 180./3.14156
                    WRITE(6.1030)N. PHI(N). THICK(N).DL(N)
STRCH
        389
STRCH
        190
                690 CONTINUE
STRCH
        391
              c
STRCH
        392
              C
STRCH
        393
                    PP1 = RVALUE+1.
STRCH
        394
                    RCCNST=2.*RP1/( 2.*(1.+PVALLE+RVALUE) )
STRCH
        395
                    D(1.1) = FF1 * FCCNST
STRCH
                    D(1.2)=RVALUE*FCONST
        396
        397
                    0(2.1)=0(1,2)
STPCH
STECH
        399
                    D(2.2)=D(1.1)
                    CLAMDA= FP 1*RP 1/(1.+PVALUE+FVALUE)
STRCH
        390
STRCH
        400
                    POI SON= FVALUE/RP1
STRCH
        401
              c
STRCH
        402
STRCH
        403
                    K = 0
STRCH
        404
               2001 CONTINUE
STRCH
        405
                    K=K+1
STRCH
        406
              C
STRCH
        407
STECH
        408
                    CALL STIFF(R.Z.UR.UZ.CCCE,SLOF.YY.YX,SPHI.CPHI.DL.EPS.
STOCH
       403
                   ITHICK . ALPHA . GAMMA . ETA . FENECE . FF . A . B . NG)
```

```
STRCH
       410
        411
STPCH
              STOCH
       412
                    INTRODUCTION OF BOUNDARY CONDITION
              STRCH
STECH
STRCH
        415
              C
STRCH
                   CALL MODIFY(CODE.A.P.ALPHA.GANVA.ETA.NUMNF.NEG. MPANC. FPNFCE)
        416
STRCH
STRCH
        418
                    BANDED SYMMETRIC SCLUTICA
STRCH
        419
STRCH
        420
                    CALL TRIA(NEO, MEAND, 4)
                    CALL MACKS (NEG. MBAND, A.P.)
STRCH
        421
STECH
        422
STRCH
        423
              COPPOSED TO COMPUTE FOR PETUPRATION OF UR IS COMPUTED FOR PETUPRATION OF UR FOR MODES COPPOSED TO COMPUTE FOR PETUPRATION OF UR FOR MODES COPPOSED TO COMPUTE COPPOSED TO COPPOSED TO CO
STRCH
        424
STRCH
STRCH
        425
STRCH
        427
              C
STRCH
        428
                    DC 101 N=2 . NUM1
STOCH
        429
                    TR = 3+N- 2
STRCH
                    17=19+1
        430
STRCH
        431
                    IF(N .GE. NTOLCH)F(IF)=B(IZ)/ALFHA(N)+GANMA(N)
STRCH
        432
                101 CONTINUE
STECH
        433
STRCH
        434
              TO OBTAIN AN EFFICIENT CONVERGENCE ACOEF IS COMPUTED
STOCH
        435
              C
                    THE ACCELERATING COEFFICIENT IS DETERMINED IN SUCH A WAY PERTURBATIONAL TERM TIMES ACCELERATING COEFFICIENT IS NEVER GREATER THAN THE INITIAL VALUE. BUT BE A FRACTION OF IT.
STRCH
        436
STRCH
        437
STRCH
        438
STRCH
        439
              C E.G. A2=2 MEANS HALF
STRCH
       440
STACH
        441
              c
STRCH
        442
                    CONCOF=0.0
STRCH
                    DO 103 I=1 . NUNNE
       443
STRCH
        444
                    UUP(1)=UP(1)
STRCH
        445
                    UUZ(I)=UZ(I)
STRCH
                    17=3#1-1
        446
STRCH
        447
                    IR=17-1
STRCH
        448
                    IF(E(IR) .EQ. C.)CC TO 102
STRCH
        440
                    COF1=UR(1)/8(1P)
STRCH
        450
                102 IF(E(17) .EO. 0.160 TO 103
COF2=UZ(!)/8(17)
STRCH
        451
STPCH
                    COF 1=485(COF1)
        452
STRCH
        453
                    COF2=ABS (COF2)
STRCH
                    A1=AMIN1(A1,CCF1,C7F2)
        454
STRCH
                103 CONTINUE
STRCH
        456
              C
STRCH
        457
                105 CONTINUE
STRCH
        458
                    IF (CONCCF .EQ. 1.) A 2= A 2+5
                    IF(A2 .GT. 1250)GC TO 2300
IF(A1 .50. 1.C .AND. A2 .GT. 10.)CCF1=5.
STOCH
        459
STRCH
        460
STRCH
        461
                    IF(COF1 .EQ. 0.)CCF1=2.
STRCH
        462
STECH
                    IF(A1 .GT. 1.0) A1=1.0
ACDEF=A1
        463
STOCH
        464
STRCH
                    WRITE(6.104141
        465
STRCH
        466
STOCH
        467
              STRCH
        468
                    CBTAIN NEW VALUE
STPCH
                                    *****************************
STRCH
        470
              C
STRCH
                    DC 130 1=1 . NUMNE
        471
STRCH
        472
                    17=3+1-1
STRCH
        473
                    TP= 17-1
STRCH
        474
                    15=17+1
STRCH
        475
                    UP([]=UUP([]
STRCH
        476
                    U7(1)=UUZ(1)
                    UP(1)=UR(1)+P(10)*ACCEF
STOCH
        478
                    U7(1)=U7(1)+E(12)+ACGEF
        479
STRCH
                    SLCF(1) = SLOF(1)+B(15)*ACCEF
                130 CONTINUE
STRCH
        480
        481
STRCH
STRCH
                    WPITE(6.1016) K
STRCH
        483
                    WRITE(6.1006) K
STOCH
        494
              0
STRCH
        485
STRCH
        486
              COMPUTE NOPH OF SEECS AND NOEN OF SCLUTION.
STRCH
        487
STRCH
STRCH
        4 90
                    ENDON = 0.
STRCH
        490
STRCH
        491
                    SNERW = 0.
                    DO 134 T=1. NUMEP
TZ=7*T-1
STPCH
        492
STRCH
STECH
        494
                    10=17-1
```

```
STRCH
         495
                        ENCRM = ENORM + P(15)*E(15) + P(17)*B(17) + P(15)*B(15)
SNORM = SNORM + U5(1)*UF(1) + U7(1)*U7(1) + SLOP(1)*SLOP(1)
         497
STRCH
         498
                   134 CONTINUE
                       ENCEM = SQRT(ENCRM)
SNORM = SQRT(SNCRM)
STRCH
         499
STRCH
         500
STOCH
         501
                        ESNCRM=ENDRM/SNCRM
                        WEITE (6.1015) SNORM, SACEM, ESACEM
         502
STPCH
         503
                C
STECH
         504
                        DC 776 1=1 . NUMBE
STRCH
                        17=3=1-1
         505
STACH
         506
                        16=17-1
         507
                        15=1Z+1
STPCH
         508
                        WRITE(6.1002) 1.8(1R).8(1Z).8(15).UR(1).UZ(1).SLOF(1).F(1).Z(1)
STRCH
         509
                  776 CONTINUE
STRCH
         510
                C
STOCH
                  131 CONTINUE
STOCH
         512
STRCH
         513
STECH
          514
STRCH
         515
STRCH
         516
STRCH
         517
                c
                       COMPUTE STRAIL FROM THE NEW GUESS.
                C COMMUTE STRAIN FROM THE NEW GUESS. .

C EPS(1,N)=INCREMENT OF TANGENTIAL STRAIN

C EPS(3,N)=INCREMENT OF TANGENTIAL STRAIN

C EPS(3,N)=INCREMENT OF TANGENTIAL STRAIN

COMMUTE STRAIN FROM THE NEW GUESS. .
STRCH
         518
STPCH
          519
STRCH
         520
STRCH
         521
STOCH
         522
STRCH
         523
                c
STRCH
                       DC POO N=1 . NUMEL
         524
                        NP 1 =N+1
STRCH
         525
STRCH
         525
                        OLL =DL(N)
STRCH
                        SPH=SPHI(N)
          527
STRCH
         528
                        CPH=CPHI(N)
STRCH
         529
                        AU=UR(N)+UR(NF1)
STRCH
                        4R=2(N)+R(NP1)
STRCH
         531
                        DREP(N)-R(NP1)
                       DZ=7(NP1)-Z(N)
STRCH
         532
STRCH
         573
                        DU=UR(N)-UR(NF1)
STRCH
         534
                        DW=UZ(NP1 1-UZ(N)
STRCH
         535
                       EX1=1.+2.*DR*CL/DLL/DLL+2.*D7*DW/DLL/CLL+(CU*DU+DW*CW)/DLL/DLL
                        EPS(1.N)=SORT(EX1)-1.
STRCH
         536
STRCH
         537
                        EPS(1.N) = ALCG(1.+EPS(1.N))
STPCH
                        EPS(2.N)=AU/AR
         539
STOCH
                        EPS (3.N) =-EFS (1.N)-EPS (2.N)
STPCH
         540
                   POD CONTINUE
STOCH
         541
                c
STACH
         542
STPCH
         543
                c
STECH
         544
STECH
         545
                        TE 51 = 0. 0
STRCH
         546
                       WRITE(6.1026) NSTEP
STRCH
         547
STOCH
         549
STRCH
         540
STRCH
         550
                       COMPUTE INCREMENT OF EFFECTIVE STEAIN
STRCH
         551
                C**************
STRCH
         552
STRCH
         553
                C
STRCH
         554
                        DC 222 N=1. NUMEL
         ...
                       F 5= F P S ( 1 . N)
STRCH
STRCH
                        ET= EPS(2.N)
STRCH
         557
                       RRAFERP1 * (ES*ES+ET*ET) + 2.*FVALUE*ES*ET
EPS(4.N) = SQRT(2.*PCCNST*RRAR/3.)
STRCH
         559
STRCH
         559
STOCH
         560
STRCH
                        IF (NSTED .EQ. D) YY(N) = YIELD
         551
                       STS(1.N)=CLAMCA*(ES + POISON*ET)*YY(N)/FPS(4.N)
STS(2.N)=CLAMCA*(ET + POISON*ES)*YY(N)/FPS(4.N)
STRCH
STRCH
         563
STRCH
         554
                STRCH
         565
                000
                       COMPUTE STRESS DISTRIBLTION
STRCH
         566
STRCH
         557
                        STS (1 .N) = MERICIAN STRESS
STRCH
         568
                        STS(2.N)=CIPCUMPERENTIAL STRESS
                        STS (3.N)=EFFECT IVE STRESS
         569
STRCH
                                                            **************************
STRCH
         571
STECH
         572
                        IF(ESNORM .LT. FLIMIT)TEST=1.0
STRCH
         573
                        ES= STS(1.N)
                       ET = STS (2,N)
EFS TRS = ES + ET + FT - 2. * FC ISON + ES + ET
STOCH
         574
STRCH
         575
STRCH
         576
                        STS(3.N)= SORT(EFSTRS)
STPCH
         377
                C
STRCH
                        WP! TF(6.1003) N. (EFS(1.N). [=1.4)
                  222 CONTINUE
STRCH
         570
```

```
STRCH
        580
STRCH
        581
                    WEITE (6.1027)
        592
STRCH
                    DC 439 N=1.NUMEL
STPCH
                430 WPI TE(6.2251) A. (STS(1.A).1=1.3)
        583
STRCH
        584
STRCH
        5 25
                    CHECK WHETHER ACCEF IS TOO LARGE TO CAUSE A PHYSICALLY UNACCEPTABLE SOLUTION. WHENEVER COMPUTED MEDIDIAN STRESS BECOMES NEGATIVE ADJUST ACCEP VALUE)
STRCH
        586
STRCH
        597
STRCH
        SAP
STRCH
        589
STRCH
        590
STRCH
        591
                    CONCOF = 0.0
STRCH
        592
                    STS1=0.0
                    DO 431 N=1. NUMEL
STRCH
        593
                IF(STS(2.N) .LT. STS[)STS]=STS(2.N)
431 IF(STS(1.N) .LT. STS[)STS]=STS(1.N)
IF(STS1 .LT. G.)CONCOF=1.0
STRCH
        594
STOCH
        595
STRCH
        596
                    IF (CONCOF .EQ. 1.0160 TO 105
STRCH
STRCH
        558
        599
STRCH
STPCH
        600
STRCH
        601
              STPCH
        502
              C
                   CHECK WHETHER (SPECE NORM) / (SCLUTION NORM) IS LESS THAN FLIMIT
                    IF YES. THE SCLUTICH IS FINAL
STRCH
        603
STRCH
        604
STPCH
        605
STRCH
        606
              C
STRCH
                    IFIESNORM .LT. FLIMITIGE TO 436
        507
STRCH
        600
STRCH
        509
                    IFIK .GE. ITERIGO TO 436
                    GC TO 2001
STRCH
        510
STRCH
               2000 CONTINUE
        611
STRCH
        612
               2200 CONTINUE
STRCH
        613
              C
STOCH
        614
                438 CONTINUE
                    IF (ESNORM .GT . FLIMIT ) CO TO 777
STRCH
        615
STRCH
        616
STRCH
        617
              C
STPCH
                    WPITE (6,2800)
        618
STRCH
        619
STRCH
        620
                    EXAMINATION ON POUNCARY ASSUMPTIONS
STRCH
        621
              C**************
STECH
        522
              C
STRCH
        623
                    DO 250 1=1 .NCHECK
STRCH
        524
                    N=NTOUCH-I
STRCH
                    IFIN .LE. IIGC TO 250
        625
STRCH
        526
                    TOUCH(1)=(Z(N)+UZ(N)+PNRAD-PNFEC)**2.+(F(N)+IF(N))**2.
STRCH
        527
                    TOUCH( I )=SORT (TOUCH( ! ) )=PNPAD
STRCH
        628
                    WFITE (5.2900) N. TCUCH(I)
STRCH
        629
                250 CONTINUE
STRCH
STRCH
        631
                    IF (A95(TOUCH(1)) .LT. .0001 )TCUCH(1)=C.
STRCH
        632
              STRCH
STRCH
        634
                    CHECK ON BOUNDARY OVER PUNCH HEAD
              C**********
STRCH
        635
STOCH
        € 36
STRCH
        637
                    IF(TOUCH(1) .CE. C.)GO TO 3000
STRCH
        638
              C
STRCH
        639
                    WEITE(6.3100)
STOCH
STRCH
        641
              NCDE AT NCHM1 IS INSIDE PUNCH. COMPUTE AGAIN
STRCH
        642
STRCH
STRCH
        544
STRCH
        545
                    TC+COF=0.0
STECH
        -4-
                    TINSDE =0.0
STOCH
        647
                    GO TO 2101
STRCH
        649
STRCH
        649
STPCH
        650
               3000 CONTINUE
STRCH
        651
                    TINSDE =1 . 0
STPCH
        652
                    TEST= 1.C
STRCH
        653
STECH
STRCH
        655
                    COMPUTATION OF FRICTION COEFFICIENT
              C**********************************
STECH
        656
STRCH
STECH
        55A
                    MUCEX =0
                    PONHED = DNHED
STRCH
        459
STRCH
        660
                    WRITE(5,233)(FRNECE(N), N=NTOUCH, NUM1)
STRCH
                    IF (FRITH .EG. C.) CC TC 234
STOCH
        552
                    WRITE(6,231)
STRCH
        663
STECH
                    DC 230 1 =NTOUCH . NLV1
```

```
STOCH
       466
                    15=17-1
STRCH
        667
                    DUM 1= (Z(I I+UZ(I)+PAFED-FENHED)/FNEAD
STRCH
        668
                    DUMS=(E(1)+UE(1))/FNEAC
       669
                    PN=FF(17)*9UM1+FF(1F)*CUM2
STRCH
STRCH
                    PT=FF ( 12 1+0UM2-FF( 12 )+0UM1
STRCH
        671
                    XMU=FT/FN
                    WEITE (6.232)1.XML
        572
STRCH
        573
                    XWU=XWU/FRITK
                    TELXMU .GT. 1.02 .CE. XMU .LT. .QR)MUDEX=1
ERNECE(1)=ERNECE(1)/XML
STRCH
        574
STRCH
       675
STRCH
        676
                230 CONTINUE
STRCH
        677
                PUNITINCO PES
STRCH
       678
STRCH
        679
STRCH
        580
STECH
        681
STRCH
       692
              MUDEX=0. IF FRICTION CONDITION IS SATISFIED
=1. CTHERWISE
STECH
              C
       693
STRCH
              STPCH
       685
STRCH
       685
STPCH
        657
             c
                   IF(MUDEX .EQ. 1)TCHCCF=1.0
IF(MUDEX .EQ. 1)GC TC 2001
STRCH
        589
       685
STRCH
STRCH
       690
                   N77=3*NTOUCH-1
STRCH
       691
STRCH
       692
STRCH
        503
              **********************************
                   GENERALIZED NODAL FORCE NORMAL TO THE DUNCH IS COMPUTED TO CHECK WHETHER THE ROUNDARY IS ASSUMED TO MOVE TOO FAST.
STRCH
       694
             C
       695
STRCH
             c
STRCH
       595
STPCH
       697
                   IF(FF(NZZ)) .GT. 0.) GC TO 500
IF(ARS(FF(NZZ)) .LT. .000001 .GF. TINSD5 .E0. 0.1GG TO 500
TDIST=TOUCH3*.8
STPCH
       698
STRCH
        599
STPCH
        700
STPCH
       701
                    WETTE (6.510)TE IST
STRCH
       702
                    NTOUCH=NTOUCH+1
                    TCHCOF=1.0
STRCH
       703
STPCH
       704
                    GO: TO 446
STRCH
       705
               500 CONTINUE
STPCH
       706
             c
STPCH
       707
       709
STRCH
             c
STRCH
                    NNTCH=NTOUCH
        709
                   DD 240 1=1.NCHECK
IF(TOUCH(1)-TEIST)245.246.246
STRCH
       710
       711
STRCH
STRCH
               245 NTOUCH = NNTCH-I
STRCH
       713
                   TOUCH2=TOUCH(I)
                   FRNFCE(NTOUCH)=FRNFCE(NNTCH)
STRCH
       714
STOCH
       715
                240 CONTINUE
       715
717
               246 TCHCCF=1.0
STECH
STECH
                   WP1 TE (6 . 1043)
       718
STRCH
             C***********************************
STRCH
STRCH
       720
                   COMPUTE TOTAL STRAIN
       721
STRCH
              STRCH
             C
STRCH
       723
               DC 443 I=1, 4
442 TEPS(I,N)=TEPS(I,N)+EPS(I,N)*TEST
       724
725
STRCH
STRCH
STRCH
       726
                    IF(ESNORM .LT. FLIMIT)THICK(N)=THICK(N)=EXP(EPS(3.N)*TEST)
WRITE(6.1003)N, (TEPS(1.N).1=1.4)
STRCH
       727
STPCH
       728
               444 CONTINUE
       729
STECH
STECH
STRCH
       731
STRCH
       732
STRCH
       733
                     **************
STRCH
              735
736
STECH
STRCH
STOCH
       738
739
STOCH
STECH
                    EWAX=0.0
               DC 775 N=1,NUMEL

775 IF(EPS(4,N) .GT. EMAX) EMAX=ECS(4,N)

EFACTA=ECONST/EMAX

IF(NSTED .LE. 2 .AND. ITCONT .EG. 0)G0 TO 778

DDN+ED=2./EFACTA/UZ(NUMNP)-1./FFACT/DDNSTP
STRCH
        740
STRCH
       741
        742
STRCH
STRCH
        743
       744
STRCH
STRCH
        745
                    DPNHED=1./CPNHED
STPCH
       746
                    EST AREDPNHED/LZ (NUMNP)
STOCH
       747
                    DPASTR=UZ (NUMAF)
                778 CONTINUE
STRCH
        748
STECH
       740
                    FFACT=EFACTA
```

```
740
STPCH
STRCH
       751
STRCH
       752
STRCH
               777 CONTINUE
STECH
       754
                   IFIESNORW .CT. FLIMITITCHCOFE 1.0
       755
STRCH
STOCH
                              ************
STRCH
       757
                  NEW CONFIGURATION
             STRCH
        758
STRCH
       759
STRCH
        760
                   DC 439 I=1. NUMAF
STRCH
       761
                   17= 3=1-1
                   IR=17-1
STRCH
       762
STRCH
                   R(1)=R(1)+UR(1)+TEST
STECH
       764
                   2(1)=2(1)+U7(1)*TEST
       765
               439 CONTINUE
STRCH
STRCH
STPCH
       767
STPCH
       768
             760
STRCH
                  PUNCH THE SOLLTION
             STRCH
       770
STRCH
       771
             0
STECH
       772
STRCH
        773
                   IFINPUNCH .EG. OI GC TC 310
                   PUNCH 1017, (UF([],U7([], SLOG([], [=],NUMNP)
FUNCH 1017, (R([],7([],[=], NUMNP)
PUNCH 1017, ( (TEPS([,N),[=],4), N=1, NUMEL)
STRCH
       774
       775
STOCH
STECH
       776
STRCH
       777
                   FUNCH 1017. (THICKIN), N= 1. NUMEL )
STRCH
        778
                   PUNCH 2223. PNHEE. NTCUCH. TCHCCF, EFACT
PUNCH 233. (FRNFCE(N). N=1. NUM1)
       779
STECH
STRCH
        780
                   FUNCH 233, ESTAP, CENSTA, CENHED
STPCH
       781
               310 CONTINUE
STACH
       782
             C
STPCH
                   IF(ESNOFM .GT. FLIMIT) CC TO 2300
       783
STECH
STOCH
       785
                   WEITE (5.1040)
                   DC 849 I=1 . NUMNP
STECH
       786
STRCH
       797
                   19=3=1-2
STRCH
       788
                   1 Z = 1 R+ 1
STRCH
       780
                   11 = 17+1
STRCH
       790
                   WEITE (5.1041) (1. FF( 1F). FF( 1Z). FF( 1L))
STRCH
               849 CONTINUE
       791
STRCH
       792
STRCH
       797
             STPCH
       794
STECH
                  COMPUTE THE PUNCH LCAD FROM ENERGY BALANCE
STRCH
       796
STRCH
       797
             C
                   SUME =0.
STECH
       798
STRCH
                   00 850 1=2.NUMNE
        799
                   17= 1 = 3-1
STOCH
       -00
                   IR=17-1
STRCH
       901
STPCH
        A02
               950 SUMF=SUMF+FF(17)#U7(1)+FF(19)#U4(1)
STPCH
       903
                   SUMP = SUMF /UZ ( NUMN F) /TEST/FACTUS
STOCH
       904
                   WRITE (6.1042) SUNE
                   HELTE (6,1028) PONHET, NATCH
STECH
       905
STRCH
       906
                   WRITE(5,1029)EMAX.UZ(NUMNP).EFACT
STRCH
       907
STRCH
       ROR
STECH
       809
              2300 CONTINUE
STPCH
       910
              2301 CONTINUE
STOCH
       A11
STREH
       912
STRCH
        413
              1002 FORMAT(15.3F13.7.5X,3F13.7.5X,3F13.7)
STRCH
       814
               1003 FORMAT(17.11F11.6)
STRCH
       815
               1004 FCEWAT (1615)
               1005 FCRWAT(1H1.* STEAIN-STRESS SCLUTTON AT STEE NUMPER = 1.14//
1 * FL. NO...R-STRAIN...Z-STRAIN..TH-STRAIN...FZ-STRAIN...EF-STRAIN
STACH
        P16
STRCH
STRCH
       BIR
                  2...G-STRES...Z-STRES...TH-STRES...RZ-STRES...FF-STRES...AVG-STRES...
STOCH
       919
STPCH
       P 20
              1006 FORMAT (/// 30x, * CISPLACEMENT SOLUTION AT ITERATION NUMBER =* .14
                  1/// 20x, * FLETUSPED*, 26x, * TCTAL*, 20x, * DEFORMED COCRDS/
2/ * NP DU DE DETA U
3 # SETA F 7*)
STRCH
        921
STPCH
       922
STOCH
       823
STRCH
       824
               1007 FORWATE 1H1 .7CX. # ITERATION DROCESS FOR STEDE . 141
              STOCH
       925
STACH
       826
STRCH
       827
STRCH
        828
               STRCH
       929
STRCH
       930
STRCH
       A31
              1012 FORWAT(19.6F17.E)
1015 FORWAT(60X.* VELOCITY CONVERGENCE*./
60X. * NOR* OF SOLUTION VECTOR ±*, F13.E
STRCH
       932
STRCH
       833
STOCH
```

```
/ 60x, * NOPM OF FREDE VECTOF ##, F13.6
/ 60x, * FFACTICNAL NOFM ##, F13.8)
# DISPLACEMENT SOLUTION AT ITERATION NUMBER ##, [4]
STOCH
          A35
          936
                   1016 FOSWATE
1017 FOSWAT (8F10.7)
STECH
          8 37
STACH
          9 3A
STACH
                   1018 FORMATE ////* DOES NET CENVERGE#//
                        14 TOY AGAIN WITH DECELLERATION CREFFICIENT SACOEFS LESS THANE.
STRCH
          840
STRCH
                        2FA. 11
          841
                   1020 FORMATI 20F4.1)
STECH
          842
                   102F FREMAT(4x.15.3x.F12.6.10x.15.3x.F12.6.10x.15,3x.F12.6)
STECH
          843
STOCH
          844
STRCH
          845
                   1026 FORMAT ( / / * INCREMENTAL STRAIN-TOTAL STRAIN AT STEP NUMPER = * . 14//
                        INEL NO....S-STRAIN.....THE-STRAIN.....THI-STRAIN.....EF-STRAN
STOCH
          ...
STACH
          947
STOCH
          ...
                   1027 FORMAT (/// TEL. NO.... S-STRESS .... THE-STRESS .... EF-STRESS .... #)
                   1042 FORMAT(* PUNCH FCRCE=*,F15.7)
1043 FORMAT(*//*EL NO....S-STRAIN.....THF-STRAIN....THI-STRAIN....
1EF-STRAIN....*)
STACH
          949
STRCH
          850
STRCH
          ...
                   1041 FORMAT(5x,110.5x,2520.7)
1040 FORMAT(7/* NC. OF NODE FORCE*)
510 FORMAT(7/* NTOUCH IS FORCED TO TOUCH, COMPUTE AGAIN
          852
STRCH
STRCH
          953
STECH
          854
          855
                        14./*
                                  TDIST=4.F10.71
STOCH
                   1030 FREMAT(/17.3F10.5)
1031 FREMAT(* GEOMETRY OF PROFILE*//
STOCH
          -56
STRCH
          957
                   1 #8L NNG.....ANGLE.....THICKNESS.....*)
104 FORMAT(//* ACCEF CALCULATED*.F10.7)
2900 FORMAT(/I10.F20.7)
STRCH
          959
STOCH
          859
STRCH
          960
STRCH
                   2800 FORWATI //* CHECKING DISTANCE AWAY FROM PUNCH+.
          661
                   14 ELEM NO. TOUCH#/)
3100 FORWAT(* NODE AT NCHM1 IS INCIDE PUNCH, COMP AGAIN#)
STRCH
          962
STRCH
          P63
STOCH
          964
                    231 FORMATI //#
                                         NODAL PEINT
                                                                   CCEFFICIENT*,/)
                    232 FORWAT(110.F1C.5)
STRCH
          965
STRCH
                    233 FORWAT(4F15.7)
          P66
STRCH
          867
                   2223 FORMAT(F15.7.15.3F15.7)
                   102R FORWAT(* PUNCH HEAD DISPLACEMENT*.F10.5/* NTFUCH: *,15)
1029 FORWAT(///* MAX EFFECTIVE STRAIN INCREMENT:.F10.7/* PUNCH
1 HEAD INCREMENT:*.F10.7./* PUNCH HEAD ADJUSTING FACTOR:.F10.7
STECH
          368
STPCH
          959
STPCH
          870
          A71
STOCH
          872
STRCH
          974
STRCH
                         PETUEN
STECH
                         END
STRCH
                          SUBROUTINE STIFF (P. 7. UP. U7. COCF. SLOP. YY. YX. SPHI. CPHI. DL . EPS.
STRCH
          977
                        THICK AL PHA GANNA . FTA . PENECE . FF . A. P. NO.)
STECH
          878
                 C
                        COMMON/GENCON/NUMME, NUMEL, HER(12), DLL, NEG, NEGEM, YIELD, TEST, ITER, INREAD, NOUNCH, NPRINT, PVALUE, T, MRAND, FNRAD, PADIUS, FRITN.
STRCH
          870
STPCH
          880
STRCH
          991
                        PECCAST, FNHEC, TO IST
STRCH
          892
                         COMMON/STEMAT/H(6) . P(6,6) . TEX. TEY. TEZ. THEL
                         COMMEN/CONQUAC/SS (4).WT(4).D(2.2).SQPT1
STRCH
          893
                         COMMON/ATOLCH/NTCLCH
STOCH
          995
                  c
          886
                         DIMENSION R(1),7(1),CCCE(1),UF(1),U7(1),SLOP(1),B(1),A(NO,1),
STPCH
                          FPS(4,1),RR(2),Z7(2),UU(6),YY(1),THICK(1),OL(1),SPHI(1),CPHI(1),
          887
                        2 YX (1), ALPHA(1), GAMMA(1), ETA(1), FRNFCE(1), FE(1)
STRCH
          988
STECH
          299
                 C
STECH
          990
                         DO 50 N=1. NEG
STRCH
          991
                         9(4)=0.
STPCH
          892
                         DO 50 M=1.MBAND
STPCH
          993
                     50 4(N.M)=0.
          894
                 C
STPCH
STRCH
                         WT(1)=0.3476546451
STECH
          896
                         WT (2)=0.6521451549
          897
STRCH
                         WT( 3) =WT(1)
STRCH
          898
STRCH
          899
                 00
STRCH
          900
STOCH
          901
                         00 1000 N=1 . NUMEL
STRCH
          902
                         NP 1 =N+1
                          CLL =DL(N)
STOCH
          GOA
                         SPH = SPHI (N)
STRCH
          905
                         COH=COHI(N)
STRCH
          905
                         RR(1)=F(N)
STRCH
          907
                         ZZ(1)=Z(N)
                          PR (2)=P(NP)
STACH
          908
STOCH
          909
                         UU(1) =UR(N)
STRCH
          910
                         UU(2)=UZ(N)
STOCH
          911
                         UU(3)=SLCP(N)
```

UU(4) +UP(NP1)

UU(5)=UZ(NP1)

UU(6) =SLCP(NF1

THKL=THICK(N)*DLL

STPCH

STRCH

STRCH

STOCH

912

913

914

```
STRCH
       916
                   77(2)=7(NP1)
STRCH
       917
                   YG=YX(N)
STRCH
       918
                   YH= YY (N)
       919
                   D7=Z(NP1 )-Z(N)
STRCH
       920
             C
STRCH
                   CALL CUAC(RE. ZZ.UU. CLL. SPE. CPH. YG. YH)
       921
STRCH
       922
STRCH
       923
       924
STRCH
STRCH
       925
             STRCH
       926
             c
                   PERFORM THE ASSEMBLY OPERATION. RECAUSE MATPIX A IS SYMMETRIC ONLY UPPER HALF OF THE MATRIX IS CREATED. AND THE STORAGE FOR
STECH
STRCH
       924
             C MATRIX A IS A SOUARE ARRAY RECAUSE OF PANNED SYMMETRIC PROPERTY
STACH
       929
STPCH
       930
                   00 200 I=1. 6
STRCH
       931
STRCH
       932
STRCH
       933
                   e(11)=e(11)++(1)
STRCH
       934
                   JJ=N+3-3+J-11+1
STRCH
       935
STRCH
       936
                   IF( JJ .LT . 1) GC TC 200
STRCH
       937
                   (L, I) 9+(LL, II) A=(LL, II) A
STRCH
       938
               200 CONTINUE
STRCH
       9 19
             C
STRCH
       940
              1000 CONTINUE
STRCH
       941
STPCH
       942
       943
STRCH
STOCH
       944
             CETAULANDE DE RECTAM ONTWINDER, ANCITIONO VARONUDE DEXIM OF
STRCH
       945
STPCH
       946
STRCH
       947
                   C=PNRAD-PNHED
STPCH
       949
STRCH
       949
                   NWF1=NUMNP-1
STRCH
       950
             C
STRCH
                   90 1200 N=2.NMP1
       951
STECH
       952
STRCH
       953
                   DUM 1=C+7(N)+UZ(N)
STOCH
       954
                   NF1 = N+1
STRCH
       955
                   NM1=N-1
STRCH
       956
                   DUM3=(2.*R(N)+F(ND1))/3.*DL(N)+(2.*F(N)+F(NV1))/3.*DL(NM1)
STECH
                   IF(N .EG. NTOUCH) CUM3=(2.*R(N)+F(NP1))/3.*DL(N)+(3.*R(N)+F(NM1))/
STRCH
       958
                  15. +DL (NM1)
                   AL FHA(N) =- CUMS/ CUM1
STRCH
       959
STPCH
       960
                   GAMMA(N) = (PNPAD*DNPAC-DUM2*DUM2-DUM1*DUM1)/2./DUM2
STRCH
       961
                   ETA(N)=FPNFCE(N)*PNRAD/DUM2
STECH
       962
              1200 CONTINUE
             c
STACH
       963
STRCH
       964
STPCH
       965
             STECH
       966
                  STORE GENERALIZED NODAL FORCE
             STRCH
       957
STRCH
       968
STRCH
       969
                   E*PAMUN= FMUA
              00 1300 I=1.NUM3
1300 FF(I)=-P(I)
STPCH
       970
STRCH
       971
       972
             c
STECH
STRCH
STRCH
       074
              1001 FORMAT (///.* THE DIAGONAL VECTOR OF MATRIX OF STIFFNESE*/)
STRCH
       975
              1002 FORMAT(12811.3)
              1005 FORMAT ( / 29H FLEWENT WITH NEGATIVE AREA = . 15)
STRCH
       975
STRCH
       977
STRCH
       978
                   PETURN
STRCH
                   ENC
STRCH
       981
                   SURROUTINE QUAD (RR. 77.LU.DLL, SPH. CPH. 52.51)
STRCH
       982
             C
       983
                   COMMON/STEMAT/H(6) .P(6.6) . TEX. TEY . TEZ. THKL
STRCH
       984
                   COMMON/CONQUAC/SS(41. FT(4).D(2.21.SQFT1
STRCH
       985
                   COMMON/ISC/PRVAL
STECH
       985
             C
STRCH
       987
                   DIMENSION RE(2).77(2).UU(6).B(2.6).XX(5.6).B7ERO(6).DB(2.6)
STPCH
       993
             C
STPCH
       989
                   RV &LUE=RRVAL
STOCH
                   9C=(PF(1)+F9(2))/2.
       990
STRCH
       991
             C
STRCH
       992
                   Dr 2 1=1.6
STRCH
                   H(1)=0.
       993
                   CO 2 K=1.
STRCH
       994
STRCH
       995
STRCH
                 2 P(1.J1=0.
```

```
STRCH
STRCH
        998
STRCH
       200
                    C7=27(2)-77(1)
STRCH
       1000
                    DR=FP(1)-FP(2)
STRCH
       1001
                    DU=LU(1)-UL(4)
                    CW=UU(5)-UU(2)
STOCH
       1002
STRCH
       1007
                    AU=LU(1)+UU(4)
STRCH
       1004
                    AR=88(1)+88(2)
STRCH
       1005
              c
STRCH
       1006
                    C1=2.*0=/DLL/DLL
STRCH
       1007
                    C2=2.*DU/DLL/CLL
                    C3=2. *97/DLL/9LL
STPCH
       1008
STOCH
       1000
                    C4= 2. *7 #/DLL/CLL
                    C5=#U/AF/2.
STOCH
       1010
STOCH
       1011
                    C6=1.+DP#C2+DZ#C4+(DU#DU+D##D#)/DLL/DLL
STRCH
       1012
                    C7=2./DLL/DLL
       1013
                    CR=2. /AR/AR
STRCH
STOCH
       1014
                    C9=1./50RT(C61/2.
                    C1 0=C9/C6
STOCH
       1015
STOCH
                    C11=C1+C2
       1016
STRCH
       1017
                    C12=C3+C4
STECH
       1018
STRCH
       1019
STRCH
       1020
                    DESI-SOFT(C6)
STRCH
                    DET1=2.*C5+1.
       1021
STECH
       1022
STOCH
       1023
                    51 = C9 + C1 1/DES1
STRCH
       1024
                    E2=-C9*C12/DE51
STRCH
       1025
                    E3=-E1
STRCH
       1025
                    E4=-E2
STRCH
       1027
                    E6=(-C10*C11*C11/2.+C9*C7)/DES1-E1*E1
STOCH
       1028
                    E7=-E6
STRCH
       1020
STRCH
       1030
                    E8=C10*C11*C12/2./PES1-E1*E2
STRCH
       1031
                    EG == ER
STACH
       1032
STRCH
       1033
                    511=(-C10*C12*C12/2.+C5*C7)/DES1-E2*F2
                    E12==5*F5
       1034
STRCH
STRCH
      1035
STRCH
       103€
STRCH
      1037
STPCH
       1038
STRCH
       1039
              COMPUTATION OF EFFECTIVE STRAIN INCREMENT
STRCH
      1040
                    DESEMERIDIAN STRAIN INCREMENT
DETECIPCUMFERENTIAL STRAIN INCREMENT
STECH
       1041
STRCH
      1042
              c
                    E1 =DEGIVATIVE OF MEFIDIAN STRAIN INCREMENT WITH RESPECT TO UU(1) =D(DES)/D(UL(1))
STRCH
      1043
STPCH
       1044
STRCH
       1045
                    E2=0(DE5)/0(UU(2))
       1044
                    E3=0(0E5)/0(UL(4))
STRCH
STRCH
       1047
                    E4=0(DES1/0(UU(5))
STOCH
       1048
                    E5=0(DET1/D(UL(1))
STECH
      1049
                    56=0(51)/D(UU(1))
                    E7=0(E1)/0(UU(4))
E==0(E1)/0(UU(2))
STRCH
       1050
STRCH
       10-1
STPCH
       1052
                    59=0(E31/0(UL(2))
STPCH
       1053
                    F10=0(=4)/0(UU(5))
                    E11=0(=5)/0(UL(2))
      1054
STRCH
STECH
       1055
              STOCH
       1056
STRCH
       1057
STACH
       1058
                    DES#ALOGIDESI )
STPCH
       1059
                    DET #ALOG(DETIL
STECH
       1060
                    AVF1=PVALUE+1.
STRCH
       1051
                    RVP2=500T(2.*FVALUE+1.)
                    RVP1=RVP1/RVP2
STRCH
       1062
STRCH
       1063
STRCH
       1064
              STRCH
       1065
STPCH
                    EFFECTIVE STRAIN
       1065
                    F1=DEATVATIVE OF EFFECTIVE STRAIN INCREMENT WITH RESPECT TO UU(1)
F2=WITH RESPECT TO UU(2)
F7=WITH RESPECT TO UU(4)
STRCH
       1967
STRCH
       1068
STPCH
      1060
STRCH
       1070
                    F4 = WITH RESPECT TO UU(E)
STACH
       1071
                    F11=0(F11/0(UL(11)
STOCH
       1072
                    F12=0(F1)/D(UL(2))
                    F13=D(F1)/D(UU(41)
F14=D(F1)/D(UU(5))
       1073
STRCH
STPCH
       1074
STRCH
       1075
                    F22=0(F2)/C((U(2))
       1076
                    F23=0(F21/0(UL(41)
STECH
STRCH
       1077
                    F24=0(F2)/0(UL(5))
      1078
STRCH
                    F77=D(F7)/C(UU(4))
STOCH
                    F34 =D(F31/D(LL(E))
STECH
       1090
                    F44 =0 (F4)/0 (UU(5)
                                               ***********************
STRCH
       1041
```

```
STRCH
      1082
STPCH 1083
                       EFS=DES*CES+DET*CET+SVEA*CES*CET
STPCH 10P4
                       #F 51= 3 VO 3# 50 A T( FF 5)
STRCH
        1095
                       EFS2=EVE3/SQPT (EFS)/2
STOCH
        1086
                       FF S3=-RVP3/EFS/SCFT(FFS)/A.
STPCH
        1097
       1088
STECH
STECH
                       D1=(2.*DES+RVD& +DET)*E1+(2.*FET+5V24*DES)*E5
                       02=(2.*DES+RVF4*0ET)*E2
03=(2.*DES+RVF4*0ET)*E3+(2.*DET+RVF4*DES)*EF
        1090
STRCH
STRCH
        1091
STOCH
        1092
                       D4= 12. *DES+RVD4+DET) *E4
CTOCH
        1053
                C
        1094
STRCH
                       F1=EF52+91
       1005
                       F2=5F52*D2
STECH
STRCH
                       F4= FFS2 + C4
STRCH
        1097
STECH
        1008
               C
STRCH
        1099
                       F11=EF53*D1*D1+EF52*((2.*DES+FVP4*DET)*E6+(2.*DET+FVP4*DF5)*E12
STRCH
        1100
                      1+(2.*F1+PVP4*EF)*F1+(2.*E5+PVP4*F1)*F5)
F12=FF3*D1*D2+EF52*((2.*DE5+FVF6*DET)*F4+(2.*F1+RVF4*F*)*E2)
STRCH
        1101
STOCH
        1102
                      F13=EFS3*D1*D3+EF62*((2.*DE5+EVP4*DF1)*E7+(2.*E3+EVF4*FF)*E1
1+(2.*E5+PVP4*E3)*F5+(2.*DET+EVF4*DE5)*F12)
STOCH
STOCH
        1104
                       F14=EF53+01*D4+EF52*((2.*DE5+GVF4*CFT)+E9+(2.*E1+GVD4*EF)+E4)
                       F22=FFS 3*D2*D2+FF52*((2.*DES+PVP4*DFT)*F11+2.*E2*E2)
STOCH
        1105
STRCH
        1106
                       F23=EFS3*D2*D3+EF52*((2.*DES+PVF4*DET1*F9+(2.*E3+DVF4*FF)*E2)
STRCH
        1107
                       F24=EFS3*D2*D4+EFS2*(-(2.*DES+FVP4*DET)*F11+2.*E4*E2)
                       F33=EFS3*D3*D3+EF52*((2.*DES+EVP4*DET) 4E6+(2.*E3+CVP4*F5) 4E3+(
STRCH
        1108
                      12.#E5+0V04#E3)#E5+(2.#DET+FV04#DES)#F12)
F34=2F53#D3#D44FF52#((2.#DES+FV04#DET)#F10+(2.#E3+0V04#FF)#E4)
STRCH
        1109
STRCH
        1110
STRCH
                       F44=EF53*D4*D4+EF52*((2.*DES+RVC6*)FT)*511+2.*E4*54)
STOCH
        1112
STRCH
        1113
                       F(1.1)=((51+52*EF51)*F11+52*F1*F11*PC*THEL
                       D(1.2)=((S1+S2*EF51)*F12+S2*F2*F1)*FC*THKL
D(1.4)=((S1+S2*EF51)*F13+S2*F1*F3)*FC*THKL
STOCH
        1114
STRCH
       1115
                       P(1,5)=((51+52*EF51)*F14+52*F1*F4)*FC*THKL
P(2,2)=((51+52*EF51)*F22+52*F2)*FC*THKL
STRCH
        1116
STRCH
        1117
STRCH
                       P(2.4)=((S1+S2+EFS1)*F23+S2*F2*F3)*FC*THKL
        1119
                       P(2.5)=((S1+52*5F51)*F24+52*F2*F4)*PC+THKL
STRCH
        1119
STRCH
        1120
                       P(4,4)=((S1+S2*EFS1)*F33+S2*F3*F3)*PC*THKL
STOCH
        1121
                       P(4,5) = ((S1+S2*EFS1)*F34+S2*F3*F4)*FC*THKL
STRCH
                       P(5.5)=((51+52*EF51)*F44+52*F4*F4)*FC*THKL
       1122
                       c(2,1)=P(1,2)
STRCH
        1123
        1124
STRCH
                       P(4.1)=P(1.4)
STOCH
                       P(4,2)=P(2,4)
       1125
STRCH
        1126
                       P(5,1)=P(1,5)
STRCH
        1127
                       P(5.2)=P(2.5)
STRCH
        1128
                       F(3.41=F(4.5)
STRCH
               C
       1129
                       H(1)=-($1+52*5F$1)*F1*FC*THKL
STRCH
        1130
STRCH
        1171
                       H(2)=-(S1+S2*EFS1)*F2*FC*THKL
                       H(4)=-(51+52*FF51)*F3*RC*THKL
STRCH
        1132
       1133
1134
STRCH
                       H(5)=-(S1+S2*FFS1)*F4*RC*THKL
STRCH
STRCH
        1135
                   71 CONTINUE
STRCH
       1136
STRCH
       1137
                       RETLON
STRCH 1138
                       ENC
```

```
STRCH
     1140
                 SUPROUTINE CONDEN(A.P.NEO.MAANC.N.U)
STRCH
     1141
STOCH
     1142
           STRCH
                PERFORM THE MATRIX CONDENSATION WHEN THE VALUE OF A COMPONENT
           c
                 STOCH
      1144
            C*********************
STRCH
     1145
STRCH
      1146
STRCH
      1147
                DIMENSION BINEO .. AINEC. 1)
STRCH
STRCH
      1149
                 DO 250 M=2 . MEAND
                                                                          400
      1150
STRCH
                 K=N-M+1
                                                                          MCC
STOCH
      1151
                 IF(K) 235,235,230
                                                                          MOD
             230 B(K)=B(K)-A(K.M)*L
                                                                          400
STRCH
      1152
STRCH
      1153
                A(K .M)=0.0
                                                                          ...
STRCH
      1154
             235 K=N+M-1
                                                                          MCC
                 IF(NEO-K) 250.240.240
                                                                          -
STRCH
STRCH
     1156
             240 B(K)=E(K)-A(K,W)*U
                                                                          MOD
                                                                               10
STRCH
                                                                          MOD
                A(N.M) =0.0
                                                                               11
STOCH
     1158
             250 CONTINUE
                                                                          MCD
                                                                               12
                                                                               13
STRCH
                A(N.1)=1.0
STPCH
      1160
                                                                          MUL
                                                                               14
                                                                          400
                                                                               15
STOCH
     1151
                 SETURN
STRCH
                                                                          MED
           C
                                                                          NCD
                                                                               17
STRCH
     1163
                 ENC
```

```
STRCH 1165
                      SUBROUTINE MODIFY(CCDE.A.R. ALPHA. CAMMA, ETA. NUMNE, NEC. MPAKE, FPAFCE)
STRCH 1166
                      DIMENSION CORE(1).4(NEG.1).8(1).4LPH4(1),GAWM4(1).ET4(1).FRNFCE(1)
       1158
STECH
       1169
                      DC 121 1=1. NUMBE
STRCH
       1170
                      IL = 7# 1
STRCH
                      17 = IL-1
STECH
       1172
                      1P=17-1
STPCH 1173
STPCH 1174
                      C=CCDE(1)
                      IF (C.EG. 1.) GC TO 101
                      IF (C.EG. 2.) GO TO 102
IF (C.EG. 3.) GC TC 103
CALL CONDEN(A.R.NFO,MEAND.IL.C.)
STRCH
       1175
STRCH
       1175
STOCH
       1177
STRCH
      1178
                      CONSTATALPHA(I)
STPCH
        1179
                      CONSTERETA(1)
                      CONSTG=GAMMA(I)

IF(C .EG. 4)GC TC 104

GO TO 121
STRCH
       1180
STRCH
STRCH
       1182
STOCH
       1183
      1184
                101 CONTINUE
STOCH
STRCH
                      CALL CONDEN(A.P.NEG.MBAND.IP.C.)
CALL CCNDEN(A.P.NEG.NBAND.IL.O.)
       1185
STRCH
       1186
                      GO TO 121
STOCH
       1197
STRCH
               108 CONTINUE
      1198
STRCH
       11 20
STPCH
       1120
                      CALL CONDEN(A.F.NEG.MRAND.17.C.)
CALL CONDEN(A.F.NEG.MPAND.11.0.)
STRCH
       1191
                      GO TO 121
STRCH
      1192
STRCH
       1193
STRCH
      1194
                103 CONTINUE
                     CALL CONDEN(A.F.NEO.MRAND.IR.C.)
CALL CONDEN(A, R.NEG.MRAND.II.O.)
      1195
STRCH
       1195
STRCH
                      CALL CONDEN(A.P.NEG.MAAND.fL.O.)
STRCH
       1107
STRCH
      1198
STRCH
       1199
STECH
       1200
                104 CONTINUE
                CALL PONIX (A.E.NEG. MRAND, I. CONSTA. CONSTB. CONSTB. CONSTB.)
121 CONTINUE
STRCH
       1201
STRCH
      1203
               c
STRCH
STRCH
       1204
                      RETURN
STRCH 1205
                      END
STRCH 1207
                      SUPROUTINE TRIA(NN. MM.A)
STRCH 1208
                     DIMENSION A(NN.1)
STRCH
       1209
STRCH
      1210
               C TRIANGULIZATION OF GAUSSIAN ELIMINATION FOR THE SOLUTION OF PANDED SYMMETRIC MATERY
STRCH
      1211
STRCH
                      OF PANDED SYMMETRIC MATRIX
       1212
               C*****************
STECH
       1213
STOCH
      1214
               C
STRCH
       1215
                     N = 0
STPCH
       1216
                100 N=N+1
STRICH
       1217
                      IF (N. FO. NN) RETURN
                      IF(A(N.1).NE.C.) GO TO 150
STRCH
       1218
STRCH
       1219
                      GC TO 100
STRCH
       1220
               C
STRCH
       1221
                 150 I=N
                      MB = NI NO ( MM . NN-N+1 )
STECH
       1222
STRCH
       1223
               C
STRCH
       1224
                      DC 260 L=2.WE
STRCH
       1225
                      I = I + 1
STRCH
                      C=A(N,L)/A(N,1)
       1226
STRCH
       1227
                      IF(C. FG. 0. 0) GC TC 260
                     J=0
00 250 K=L.MB
STOCH
       1228
STRCH
       1229
STRCH
       1230
STRCH
       1231
                250
                      A(1,J)=A(I,J)-C*A(N,K)
STRCH
       1232
                      A(N.L)=C
STRCH
       1233
                     CONTINUE
STRCH
       1234
               C
STRCH
       1235
                      GO TO 100
               c
STRCH
       1236
       1237
STRCH
STRCH
       1238
                      ENC
```

SUPPOUTINE BACKSINK

STECH 1240

STECH 1241 STECH 1242

STRCH 1316

SUPROUTINE HARD(EPS.Y)

```
STPCH 1317
STPCH 1318
STPCH 1319
STPCH 1320
            WORKHAPPENING CHARACTERISTIC CURVE
            C***********
      1321
1322
1323
STPCH
                  COMMON/MATERL/YVALUE. FRESTN. F XENT . PRESTS
STRCH
                  Y=YVALUE*(PRESTN+EPS)**EXFNT+FFESTS
      1324
STRCH
            c
STRCH
      1325
1326
                  RETURN
STECH
                  ENC
                  SUBROLTINE HARD 2(EPS.Y)
STECH
      1329
      1330
1331
            C****
STECH
            1332
1333
1334
1335
1336
STRCH
STRCH
STRCH
STRCH
                  COMMON/MATERL/YVALUE, PRESTN, EXENT, PRESTS
            c
STRCH
      1337
1338
1339
1340
                  Y=EXPNT*YVALUE*(PRESTN+EPS)**(EXPNT-1.)
STRCH
STRCH
            C
STRCH
                  RETURN
STRCH
                  ENC
```

APPENDIX D

PROGRAM FOR THE ANALYSIS OF DEEP DRAWING AND PUNCH STRETCHING WITH ROUND DIE CORNER

This program is for the analysis of deep drawing with a hemispherical punch head and stretching with a hemispherical punch head. In stretching, a round die profile is considered.

- (I) Data preparation card
 - 1. Read HED (A 12)
 - 2. Read RVALUE, T, ACOEF (5F 10.0)
 - 3. Read ITER, NREAD, ITCONT, NFORM, NPUNCH, NPRINT, FLIMIT (615, F10.0)
 - 4. Read NUMNP, NDEX (615)
 - NDEX: 2, if punch stretching is to be analyzed 3, if deep drawing is to be analyzed
 - 5. Read PNRAD, RADIUS, DIERAD, RTART (4F 10.0)

DIERAD: Radius of the die profile

RTHRT: Distance from the pole to the die throat

- 6. Read FRITNP, FRITND, BHFCE (4F 10.0)
 - FRITNP: Friction coefficient between the punch head and the blank

FRITND: Friction coefficient between the die and the blank

BHFCE: Blank holding force

Set 0.0 for punch stretching problem

- 7. Read YVALUE, PRESTN, EXPNT, PRESTS (4F 10.0)
- 8. Read TCONTC, TDIST, ECONST (4F 10.0)

TCONTC: Criterion distance of the contact with the die profile To start with, set this 0.002

- 9. Read N, CODE(N), R(N), Z(N), UR(N), UZ(N), SLOP(N), (I5, F5.0, 5F 10.0)
- If NREAD = 1, the new input data is to be placed behind the nodal information card.

```
PECGRAM SHEET (INPUT. DUTPUT. TAPE 5= INPUT. TAPE 6=OUTPUT. PUNCM)
SHEET
                     COMMON/GENCON/NUMP.NUMEL.HED(12).DLL.MEQ.MFDFM.YIELD.TEST.ITER.
INFEAD.MPUNCH.MPFINT.FVALUE.T.MARM.D.PNRAD.RADIUS.FRITMP.FPITMD.
SHEET
SHEET
SHEET
                     SECONST, FNHED, FTHRT, CIEFAD, ICONTC. TDIST, BHECE
SHEET
               C********************
SHEET
SHEET
                      PROGRAM BOTH FOR PUNCH STEETCHING WITH ROUNE PROFILE AND
SHEET
                      FOR DEED DRAWING. BY J.H.KIW
SHEET
           0
               ~**********************
SHEET
          10
                      COMMON/MATERL/YVALUE.PRESTN.EXPNT.PPESTS
SHEET
SHEET
          12
                      COMMON/ISOTPY/PVAL1
SHEET
          13
SHEET
SHEET
               PROGRAM SHEET IS FOR CONTROLLING THE DIMENSION OF THE COMPLETE PROGRAM. ITS PURPOSE IS TO PREVENT ASSIGNING A LARGER THAN
SHEET
          16
               C
SHEET
          17
                      NECESSARY DIMENSION FOR ANY ARRAY THEOUGH THE USE OF THE
SHEET
SHEET
          10
                      FOLLOWING STATEMENT
               C **********************
SHEET
          20
SHEET
         21
SHEET
                      COMMON A(5000)
SHEET
          23
SHEFT
         24
SHEET
          25
                      NEIGHD IS THE DIMENSION OF ARRAY A. ITS VALUE CAN BE DETERMINED PRECISELY BY FUNNING THE PROGRAM ONCE.
SHEET
SHEET
         27
SHEET
         28
SHEET
SHEET
          30
                      NFIELD=5000
SHEET
          31
          32
               SHEET
SHEET
          36
                      READ THE INPUT DATA CONTROL CARDS
               C *********************
          35
SHEET
                      TEST=1 .
SHEET
          37
SHEET
          38
                      READ(5,1000) HED
                      READ(5.1004) PVALUE.T. ACREF
SHEET
          39
                      PEAD(5,1003) ITER, NPEAD, ITCCNT, NECRM, NEUNCH, NPEINT, FLIMIT
          40
SHEET
         41
                      READ(5, 1003) NUMNP. NDEX
                      READ(5.1004) PHRAC. FACIUS. DIFRAC. FTHRT
SHEET
         42
SHEET
                      READ(5.1004) FEITHF. FRITHD. PHECE
          43
SHEET
                      READ(5.1004) YVALUE.PRESTN.EXFNT.PRESTS
READ(5.1004) TCCNTC.TDIST.ECONST
SHEET
         45
SHEET
         45
          47
SHEET
                      MED SOUTPUT TITLE

RVALUE = VALUE OF THE ANISOTROPY PARAMETER
SHEET
          4.0
SHEET
          49
                      ACCEF = ACCELERATING CR DECELERATING COEFFICIENT OF CONVERGENCE
SHEET
          50
                      NREAD=0. IF TO RYPASS THE PEACING STATEMENT IN SUPRCYITINE PLAST ITCONT=0. IF COMPUTATION STATES AT THE VERY REGGINNING AND FIRST/ SECOND STEPS ARE INCLUDED IN THE STEPS TO BE COMPUTED
SHEET
SHEET
          52
SHEET
          53
SHEET
                             =1. OTHERWISE
                      THIS INDEX IS RELATED TO THE DETERMINATION OF STEP SIZE NEGRENUMBER OF STEPS ASSIGNED PER RUN NEUNCHEL, IF CATA ARE TO BE PUNCHED
SHEET
          55
SHEET
          56
SHEET
          57
SHEET
                             =0. OTHERNISE
                      FLIMIT=VALUE OF (ERPOR NORM)/(SOLUTION NORM) REQUIRED
SHEET
          59
SHEET
          50
                      FCR CONVERGENCE
SHEET
                      NPPINTEL. IF NODAL POINT DATA ARE TO PE PEINTED
                      =0. CTHERWISE
NUMNO=NUMBER OF NOTAL FOINTS
PNPAD=RADIUS OF HEMISPHERICAL FUNCH HEAD
SHEET
SHEET
          63
SHEET
          64
SHEET
                      PADIUS=RADIUS OF THE BLANK
                      ERITND=FRICTION COEFFICIENT BETWEEN BLANK AND PUNCHEPIND=FRICTION BETWEEN BLANK AND DIE PROFILE
          55
SHEET
SHEET
SHEET
                      DIFRADERADIUS CF DIE FEDFILE
                      RTHRT=PADIUS OF DIE THEGAT
ECONST=STEP SIZE IN MAXIMUM EFFECTIVE STRAIN INCREMENT
NDEX=2, IF PUNCH STPETCHING WITH ROUND PROFILE
SHEET
          69
SHEET
          70
SHEET
          71
SHEET
                          = 3. IF DEEP DRAWING
SHEET
SHEET
          74
SHEET
                      YVALUE. PRESTN. EXPNT. PRESTS AFF TO EXPRESS THE WOFKHARDENING
SHEET
                      CHARACTERISTICS OF THE BLANK
                       STRESS=YVALUE*(PRESTN+STRAIN)**E XPNT+PRESTS
SHEET
```

```
SHEET
SHEET
              c
         80
                    NECENTIMBER OF EQUATIONS TO BE FOLVED
SHEET
                    NUMEL ENUMBER OF ELEMENTS
                    MPAND=PANE WIDTH
         82
SHEET
SHEET
         84
              85
              C
SHEET
         86
                    RVAL 1=RVALUE
                    NUMEL = NUMNP-1
SHEFT
                    MRANDES
SHEET
         80
                    NEG=NUMND#3
SHEET
         90
                    NC=NEC
SHEET
         91
                    NEL =NUMEL
         92
              C***********************
SHEET
SHEET
         94
              C
                    DETERMINE THE LOCATION OF THE STARTING POINTS OF DIFFERENT
SHEET
         95
SHEET
         96
              97
SHEET
              c
SHEET
         99
                    N1=1
SHEET
        100
                    N2=N1 +NIJMNP
SHEET
        101
                    N 3=N2+NUMNP
SHEET
                    MA =N3+NUMNP
        1 02
SHEET
        103
                    N5=N4+NUMNP
                    N6=N5+NUMND
        104
                    N7 = N6 + NUMNP
SHEET
        106
                    NA=N7+NUMEL
SHEET
                    NO = NR +NUMEL
        1 07
SHEET
        108
                    NI O=N9+ NUMEL
                    N11=N10+NUMEL
        109
SHEET
        110
                    N12=N11+NUMEL
SHEET
        111
                    N13=N12+NUMEL#3
                    N14=N13+NUMEL #4
SHEET
        112
SHEET
        113
                    N15=N14+NUMEL#4
SHEET
                    N16=N15+NEQ
        114
SHEET
                    N17=N16+NEQ#MEAND
N18=N17+NUMEL
        116
SHEET
        117
                    N19=N18+NUMNP
SHEET
        118
                    N20=N19+NUMNP
SHEET
        119
                    N21=N20+NUMNP
SHEET
        120
                    N22=N21+NUMNF
SHEET
                    N23=N22+NUMNF
        121
SHEET
                    N24=N23+NE0
SHEFT
        123
                    N25=N24+NUMNE
SHEET
        124
                    N26=N25+NUMNP
SHEET
        125
                    N27 = N26 + NI IMND
                    N28=N27+NUMNP
        126
SHEET
              c
SHEET
        128
                    CALL PRELIMIA(N1), A(N2), A(N3), A(N4), A(N5), A(N6))
                    IF(N28 .LE. NFIELD) GC TO 100
SHEET
        129
SHEET
        130
              c
        131
SHEET
              c
                    WEITE (6.1002) N28
CHEFT
        133
SHEET
        134
SHEET
        135
              SHEET
        135
SHEET
        137
SHEET
        139
              c
SHEET
        140
                    STOR
SHEET
        141
                100 CONTINUE
SHEET
        142
              c
                    CALL PLAST(A(N1).A(N2).A(N3).A(N4).A(N5).A(N6).A(N7).A(N8).A(N9).
SHEET
        143
                   14(N10),4(N11),4(N12),4(N13),4(N14),4(N15),4(N16),4(N17),4(N18),
24(N19),4(N20),4(N21),4(N22),4(N23),4(N24),4(N25),4(N25),4(N27)
3, NQ,NEL,FLIMIT,1TCONT,4COFF,NDEX)
SHEET
SHEET
        145
        146
SPEET
        147
               1000 FORMAT (1246)
SHEET
        148
               1001 FORMAT(///* THE DIMEMSION OF THE ARRAY (A) IS TOO SMALL*/
1* THE SIZE OF THE ARRAY (A) MUST PE *, 17)
1002 FORMAT(//* THE NECCESSARY SIZE OF THE ARRAY (A) IS*, 17)
        150
SHEET
SHEET
               1003 FORMAT(615,F10.0)
SHEET
        152
SHEET
        153
SHEET
               1005 FORWAT(415,F10.0)
SHEET
        155
              C
SHEET
        156
                    STOP
SHEET
                    END
SHEET
        150
                    SUPPOUTINE PRELIMIR.Z.UR.UZ.CCDE.SLOP)
SHEET
                    COMMON/GENCON/NUMMP.NUMEL. MED(12).DLL.NEG. NEDRM. YIELD. TEST. ITER.
        160
SHEET
                   INDEAD . NPUNCH . NPRINT . PVALUE . T . MRAND . PNRAC . FADIUS . FRITND . FRITND .
```

```
PECONST. PNHED . RTHET . DIERAD . TCCNTC . TOIST . PHECE
        162
CHEET
SHEET
        164
             SHEET
        165
                   READ AND PRINT OF CONTROL INFORMATION AND MATERIAL PROPERTIES
                                                                                   WATNOO13
             SHEET
        166
SHEET
        167
SHEET
       169
        159
SHEET
                   DIMENSION R(1).Z(1).CCDE(1).UF(1).UZ(1).SLOP(1)
             50 CONTINUE
SHEFT
SHEET
        171
                   WRITE (6.2000) HER.NUMBE.NUMBE
CALL HARD(0., VIELD)
SHEET
        172
SHEFT
        173
SHEET
        174
                   WOI TE (6.2010) VIELD
SHEFT
        175
                   WRITE(6.2011)
                   WRITE (6.2012 IRACIUS . PNRAD. DIESAD, FTHET, FRITND, FRITND
SHETT
        177
                   WPITE (6, 2013) YVALUE . PRESTN. EXENT, PRESTS
SHEET
                   WPITE (6. 2014) ECONST
       178
SHEET
        179
                   WRITE (5.1009) ITER
SHEET
       180
SHEET
             141
             C REAC AND PRINT OF NORAL POINT DATA MAINOUSI
SHEET
        192
                                                                                   MA 1N0031
SHEET
       1 93
SHEET
SHEET
       195
             C
SHEET
       1 46
                                                                                   MATNODIA
SHEET
                   IF (NPPINT.EG.C) GO TO 60
                   WRITE (6.1114)
SHEFT
       1 98
       189
                                                                                   MAINCOTT
                60 READ (5.1002) N.CODE(N).P(N).Z(N).UF(N).UZ(N).SLEP(N)
SHEET
        190
            C
SHEET
       191
SHEET
       192
                   NL =L+ 1
                                                                                   MA INDO 3E
                   ZX=N-L
SHEET
       193
                                                                                   WAIN0037
                   IF(L .EG. 0) GC TC 70
DF=(R(N)-R(L))/ZX
SHEFT
       194
SHEET
       195
                                                                                   MA INDO38
SHEFT
       1 96
                   DZ=(Z(N)-Z(L))/ZX
SHEET
                   DUR=(UR(N)-UR(L))/7X
       197
SHEET
                   9U7=(UZ(N)-UZ(L1)/ZX
       198
SHEET
       199
                   DS=(SLOF(N)-SLOF(L))/7X
SHEET
               70 L=L+1
       200
                                                                                   44 TN0041
SHEET
       201
SHEET
       202
                   IF(N-L) 100.90.80
                                                                                   MA THOOAZ
            C
       203
               80 CODE(L)=0.0
SHEET
       204
                                                                                   MATNONA3
SHEET
       205
                   R(L)=R(L-1)+DR
                                                                                   MA INO 044
SHEET
                   SLOP(L)=SLOP(L-1)+DS
       206
SHEET
                   Z(L)=Z(L-1)+DZ
SHEET
       208
                   UR (L)=UP (L-1)+DUR
SHEET
                   UZ(L)=UZ(L-1)+DUZ
       200
SHEET
       210
                                                                                   WA 1N0045
SHEET
       211
SHEET
                90 IF ( NUMME-N) 100.110.60
       212
SHEFT
               100 WPITE (6,2009) N
                                                                                   MA ! NO 052
SHEET
       214
                   CALL EXIT
                                                                                   MATNODEZ
SHEET
       215
               110 CONTINUE
                                                                                   MA 1N0054
SHEET
       216
             C
                   WPI TE (6.2002) (K.CODE(K).P(K).7(K).UF(K).UF(K).SLOP(K).K=1.NUMNP)
       217
SHEFT
       218
SHEET
       219
SHEET
       220
                   NEG=3±NUMNP
SHEET
       221
                   WEITE (6, 1122) NEG, MEANC
SHEET
       222
SHEET
                                       223
              1002 FORWAT(15.F5.0.5F10.0)
SHEET
       224
              1003 FORMAT(1615)
SHEFT
       225
SHEET
       226
              1004 FORMAT (18.2111.2F10.6)
SHEET
       227
              1005 FORWAT(215.4F10.0)
              1006 FORMAT(// * THE NODAL POINTS AT WHICH FORCE CALCULATIONS ARE DESIR
SHEET
       228
SHEET
                 1ED# // 2015)
       229
              1007 FORMAT(1H1,15X, 39H LINEARLY CISTRIBUTED BOUNDARY STRESSES/
1 / 60H NODE I NODE J PRESSURE I PRESSURE J SI
SHEET
       230
SHEET
       231
                1 / 60H NODE I NO 2 14H SHEAR J)
                                                                           SHE AP T
SHEET
              1009 FORMAT(219, 4E15.5)
1009 FORMAT(///# MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR EACH INCREMEN
SHEET
       233
SHEET
       234
SHEET
                  1T =#. 131
             SHEET
       236
SHEET
       237
SHEET
       238
SHEET
       239
       240
SHEET
       241
                                                                                   MATNO127
       242
SHEET
SHEET
       244
                                                                                   MAINO137
                                               TYPE P-CEDINATE Z-OPCINATE E LO
SHEET
       245
SHEET
```

```
2005 FORMAT(//.*FORCES SPECIFIED AT NODAL POINT*.//.
SHEET
                  1 * NODAL PT. ELEMENT1 ELEMENT2 PRESSURE
2009 FORMAT (26HONDDAL POINT CAPD ERFOR Nº 15)
SHEET
         248
                                                                                        SHEAR* . / )
         249
SHEET
                                                                                                       MAIN0145
                 2010 FORMAT(// * INITIAL VIELD STRESS = *, F15.7//)
2011 FORMAT(///* SPECIFICATIONS OF THE PROBLEM*//)
SHEET
         250
SHEET
         251
                 2012 FORMAT(* RADIUS OF PLANK IS *.FIO.5/

1 * RADIUS OF PUNCH HEAD *.FIO.5/
2 * RADIUS OF DUNCH HEAD *.FIO.5/
3 * DISTANCE FROW POLE TO THEOAT#.FIO.5/
4 * FRICTION COEFFICIENT OVER PUNCH HEAD*.FIO.5/
5 * FRICTION COEFFICIENT OVER DUNCH HEAD*.FIO.5/
SHEET
SHEET
         253
SHEET
         254
SHEFT
         255
SHEET
         256
SHEET
SHEET
         258
                                * WORKHARDENING CHARACTERISTICS#/)
                 2013 FCRMAT (/*STRESS=*.F10.5, *T IMES(*.F10.5, *+ STPAIN) EXP(*,F5.3.
SHEET
         259
SHEET
                      1*)+*,F10.3//)
                 2014 FORMAT (///* STEP SITE IS*.F10.E/)
SHEET
         261
SHEET
                       RETURN
         262
SHEET
                        END
                        SUBROUTINE PLASTIF, 7. UF. UZ. COCF, SLOP, YY. YX. SPHI. CPHI.CL, STS. TEPS.
SHEET
         265
SHEET
         266
                      1EPS, R.A. THICK . ALPHA . GAMMA . ETA . FRNECE . PHI . FF . TCUCH . CENTAC . LUR . UUZ .
SHEFT
         267
                      2NG. NEL . FLIMIT . ITCCAT . ACCEF . NDEX )
SHEET
         268
         259
SHEET
                C***********************
                      PLAST IS THE CONTECLLING SUSPECUTINE
SHEET
SHEET
         271
SHEET
         272
                        CDMMON/GENCON/NUMNP.NUMEL.HED(12).DLL.NEG.NFCFM.YIELC.TEST.ITEF.
         273
                      INREAD, NPUNCH, NPRINT, EVALUE. T. MRAND, PNFAD, PADILS, FRITNP, FRITND.
                      2ECONST. FNHED. FTHPT. DI ERAD. TCONTC. TDIST. BHECE
SHEET
         275
SHEET
                        CDMMON/CONQUAC/55(4). #T(4). D(2.2). SOFT1
         276
SHEET
         277
                        COMMON/ATOUCH/NTOUCH, NO IE, NCONTC
SHEET
         278
                C
SHEET
                        DIMENSION R(1), Z(1), UR(1), UZ(1), CCDE(1), SLOP(1), YY(1), YX(1),
SHEET
         280
                      1 TEPS(4.1) .R(1) .A(NQ.1) .THICK(1) .CFHI(1) .SPH1(1) .DL(1) .EPS(4,1) .
                      2ALPHA(1).GAMMA(1).ETA(1).FRNFCE(1).PHI(1).EF(1).CCNTAC(1).TOUCH(1)
SHEET
         281
SHEET
         282
                      3.5T5(3,1).UUR(1),UU7(1)
SHEET
         283
         2 94
                SHEET
SHEET
         285
                      THE FIRST NODE IS LOCATED AT THE FIM OF THE PLANK
                        AND THE POLE IS THE LAST NODE
SHEET
         286
SHEET
         287
SHEET
         288
         299
SHEET
          290
                       A1.A2 ARE CONSTANTS PELATED TO DETERMINATION OF ACCEP PHHED=PRESENT POSITION OF PUNCH HEAD
SHEET
         291
                C
         292
SHEET
                       NTOUCH=FIRST NODAL POINT IN CONTACT WITH PUNCH HEAD NCHECK=NUMBER OF NODES FOR WHICH THE CONTACTING WILL BE CHECKED TCHCOF=0. IF BOUNDARY IS TO ADVANCE
SHEET
         293
SHEET
         294
SHEET
         295
SHEET
         296
                              = 1. OTHERWISE
                297
SHEET
SHEET
SHEET
         299
                        PNED=7 (NUMNP)
SHEET
          300
                        NCHECK=NUMEL/10
SHEET
                        NUY 1 = NUMNP- 1
         301
CHEET
         302
                        NT CUCHENUMNE
SHEET
         303
                        TCHCOF=0.0
                        FFACT=1.0
SHEET
         304
                        TEST=0.0
SHEFT
         305
          30€
                        TEST=1.0
SHEET
         307
                C
SHEET
         308
                        00 350 N=1 . NUMNE
          309
                  IF(R(N) .GE. (RTHOT+DIERAD))NDIE=N
350 IF(R(N) .GT. ETHRT)NTHET=N
SHEFT
         310
SHEET
          311
                        NCONTC =ND IE
SHEET
         312
                C
         313
                        55(1) =0.8611363116
SHEET
                        55121=0.3359810436
SHEET
         315
                        55(3)=-55(1)
SHEET
                        55(4)=-55(2)
          316
SHEET
         317
                c
                        00 442 N=1 . NUMEL
SHEET
         31 8
SHEET
                        FRNFCE(N)=0.0
          319
SHEET
         320
                        THICK(N)=T
SHEET
```

TO HANDLE THE INFINITE WORKHAPPENING FATE INITIALLY VERY SMALL VALUE IS ASSIGNED TO THE FEFECTIVE STRAIN

DC 442 I=1. 4

442 TEPS(I.N)=0 .

321

322

723

324

325

326

SHEET

SHEET

SHEET

SHEET

SHEET

```
SHEET
        328
                    00 450 N= 1. NUMFL
SHEET
        329
SHEET
        330
                450 TEPS (4. N)=0.0001
SHEET
        331
SHEET
                    FRNFCE(NTOUCH )=.001
        332
SHEET
        333
                    FRNFCE(1)=BHFCE
                    STACON, BIGNEN 005 OG
SHEFT
        334
               360 FRNFCE(N)=.0001
SHEET
        335
SHEET
        336
              C
        337
                    DPNSTR=C-1
SHEET
        338
                    DONHED = UZ (NUMLP)
SHEET
        339
                    ESTAR=1.0
SHEET
        340
SHEET
              IF THE COMPUTATION IS INTERRUPTED AFTER A NUMBER OF STEPS AND RESTARTED, THEN NECESSARY DATA NEED BE FEED
              c
SHEET
        342
        343
SHEET
              C************************
SHEET
        344
SHEET
        345
SHEET
        345
                    IFINGEAD .LE. O) GC TC 440
                    READ(5,1017)(UF(1),UT(1),CDDE(1),I=1,NUMNP)
READ(5,1017) ( R(1), Z(1), I=1, NUMNP)
READ(5,1017)((TEPS(1,N),I=1,4), N=1, NUMEL)
READ(5,1017)(THICK(N),N=1,NUMEL)
SHEET
        347
        348
SHEET
SHEET
        349
SHEET
        350
                    READ(5,223) FRNFCE(N) .N=1.NUM1)
SHEET
        351
SHEET
        352
                    GEAC(5.233)ESTAR. CPNSTR. DPNHEC. TEST
SHEFT
        353
SHEET
        354
                440 CONTINUE
SHEET
        355
              c
SHEET
                    NETEPED
        356
SHEET
                    TCONT 2=TCONTC
        358
359
SHEET
                    TOUCH2=TDIST
SHEET
SHEET
               2100 NSTEP=NSTEP+1
SHEET
        361
              C********************
SHEET
        362
              C RCUNDARY NOCE NCIE IS UPDATED AFTER EVERY STEP
        363
SHEET
        364
SHEET
        365
              C
SHEET
        366
                    DC 351 N=1 . NUNNF
                351 IF(FRNFCE(NDIE) .50. 0.)FRNFCE(NDIE)=.0001
SHEET
        367
SHEET
        368
SHEET
        369
              С
                    TCONT 3=TCONT 2
SHEET
        370
SHEET
        371
SHEET
        372
              C
SHEET
                    00 247 I=1.NCFECK
        373
SHEET
                    CONTAC(1)=0.0
                247 TOUCH(1)=0.
SHEET
        375
SHEET
        376
                    IF( TEST .EQ. 0.1GC TC 2101
SHEET
        377
              SHEET
        378
SHEET
                    DPNHED=ASSIGNED INCREMENT OF FUNCH HEAD TRAVEL
SHEET
        380
                    ESTAPSACIUSTING FACTOR
SHEET
        381
        382
SHEET
              C
SHEET
        383
                    PNHED=PNHEC+CENHEC
SHEET
              C
        384
SHEET
                    DO 445 1=1.NUMND
SHEET
        386
                    UP(1)=UP(1)*ESTAR
SHEST
        387
                    UZ(1)=UZ(1)*ESTAR
SHEET
        389
                445 CONTINUE
SHEET
        389
              C
SHEET
        390
               2101 CONTINUE
SHEET
        391
                    IF(TCHCOF .EG. 1.)GO TO 219
                    NTOUCH=NTOUCH-1
SHEET
        392
SHEET
        393
                    NTCP1=NTOUCH+1
SHEFT
        394
                    FRNECE(NTOUCH)=FPNECE(NTCP1)/3.
SHEET
        395
                219 CONTINUE
SHEET
        396
SHEET
        397
              SHEET
        398
SHEET
        399
                    UPDATING OF THE PEUNDARY CONDITION
SHEET
        400
              C************
SHEET
        401
              C
SHEET
        402
                    00 100 1=1.NUMNP
                    CODE(1)=0.0

IF(1 .GE. NTOUCH)CCDE(1)=4.0

IF(1 .GT. NDIE .AND. I .LE. NCONTC) CODE(1)=4.0

IF(1 .LE. NDIE) CCDE(1)=2.0
SHEET
        403
SHEET
        404
SHEET
        405
        4 06
SHEET
        407
                100 CONTINUE
SHEET
        408
                    CODE (NUMB )= 3.0
SHEET
        409
                     CODE(1)=2.0
SHEET
                     IF(NDEX .EQ. 2) CCDE(1)=3.0
SHEET
        411
              C
                     NTCHM1=NTCUCH-1
```

```
SHEET
SHEET
             414
              415
SHEET
                                    CONFUTE THE YIELD STRESS AND THE WORKHARDENING RATE
                         SHEET
              417
SHEET
              418
                                    DC 220 N=1. NUMEL
CALL HARD(TEPS(4.N), YY(N))
CALL HARD2(TEPS(4.N), YX(N))
SHEET
              419
SHEET
              420
SHEET
              421
SHEET
              422
                            220 CONTINUE
                       c
              423
SHEET
              424
SHEET
              425
SHEET
              426
SHEET
              427
                         c
SHEET
              428
                                    WRITE(5. 1007) NSTEP
                         c
SHEET
              429
SHEET
              430
                                    CONV=1111111.
SHEET
              431
SHEET
              432
                           659 CONTINUE
SHEET
              433
                                    WRITE(6.1031)
SHEET
              434
                         SHEET
                                    DETAIL OF THE PRESENT CONFIGURATION SPHIRSINE OF ANGLE BHI
SHEET
              436
SHEET
              437
                                    CONTECUSINE OF ANGLE PHI
SHEET
              438
                                    DL=ELEMENT LENGTH
SHEET
              439
                         C*****************
              440
                                                                              ********************
SHEET
              441
                                    00 690 N=1 . NUMEL
SHEET
              442
SHEET
              443
CHEET
              444
                                    OR=F(N)-F(NP)
SHEET
                                    DZ=Z(NP1)-Z(N)
              445
SHEET
              446
                                    DL (N)=50FT(DR *DF+0Z*07)
SHEET
              447
                                     SPHI(N)=DR/DL(N)
                                    CPHI(N) =DZ/DL(N)
SHEET
              448
                                    PHI (N) = AS IN (SPHI (N) ) * 180 . /3 . 14 1Ef
WEITE (6 . 1030) N . PHI (N) . THICK (N) . DL (N)
SHEET
              449
SHEET
              450
SHEET
                            690 CONTINUE
              451
SHEET
              452
                                    RP1=RVALUE+1.
SHEST
              453
SHEET
                                     RCCAST=3.*RP1/( 2.*(1.+RVALUE+PVALUE) )
              454
SHEET
              455
                                    D(1.1) = F0 | * RCCNST
                                    D(1.2)=RVALUE*RCONST
SHEET
              456
SHEET
                                    0(2.11=0(1.2)
              457
                                    0(2,2)=0(1,1)
CLAMDA=FP1*RP1/(1.+RVALUE+FVALUE)
SHEET
              458
SHEET
              459
SHEET
                                    POI SON=RVALUE/RPI
              450
SHEET
              451
                         C
SHEET
                                    K=0
              462
SHEET
              443
                           2001 CONTINUE
SHEET
              464
                                    K=K+1
SHEET
              465
SPEET
              466
                                    CALL STIFF (R. Z. UR. UZ. CCCE. SLOP. YY. YX. SPHI. CPHI. DL. EFS.
SHEET
              467
SHEET
                                   ITHICK . ALDHA . GAMMA . ETA . FRNFCE . FF . 4 . B . NO)
              468
SHEET
              460
                         SHEFT
              470
SHEET
              471
                                     INTERDUCTION OF BOUNDARY CONDITION
                         SHEET
              472
SHEET
              473
SHEET
              474
                                    CALL MCDIFY(CCDE.A.R.ALPHA.GAMMA.FTA.NUMNP.NEG.MRAND.FRNFCE)
SHEFT
              475
SHEET
              476
                         c
SHEET
              477
                                    SANCED SYMMETRIC SOLUTION
SHEET
              478
                         C
                                    CALL TRIAINED . MBAND , A )
SHEET
SHEET
              480
                                     CALL BACKS (NEG. WRANT. A.P)
SHEET
              481
                         C
SHEET
              482
                         SHEET
              493
                         C PEPTURBATION OF UP IS COMPUTED FROM FEDTURBATION OF UT FOR NODES CHRYMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHMANACHM
SHEET
              484
              485
SHEFT
              486
SHEET
              487
SHEET
              488
SHEET
              479
                         C
SHEET
              450
                                     DC 101 N=1 . NUMA
SHEET
              491
                                     1P = 3#N- 2
                                     17=19+1
              492
SHEET
              493
                                     TECCODE(N) .EG. 4.0) R(IR)=9(IZ)/ALFHA(N)+GAVMA(N)
SHEET
              494
                             101 CONTINUS
SHEET
                                   495
                                    TO OBTAIN AN EFFICIENT CONVERGENCE ACCEF IS COMPUTED THE ACCELERATING COEFFICIENT IS DETERMINED IN SUCH A WAY
SHEET
              496
SHEET
              497
```

```
PERTURBATIONAL TERM TIMES ACCELERATING COFFEICIENT IS NEVER
SHEET
SHEET
         499
                      GREATER THAN THE INITIAL VALUE, BUT PE A EDACTION OF IT. E.G. AREA MEANS HALF
SHEET
         500
SHEET
         501
SHEET
         502
                      A1 = 10 .
                      A2=2.
SHEET
         503
SHEET
         504
                      CONCOF=0.0
                      DC 103 1=1 , NUMNE
SHEET
         505
                      IF(ARS(UP(I)) .LT. .C000001)UF(I)=0.
IF(ARS(UZ(I)) .LT. .0000001)UZ(I)=0.
SHEET
         506
SHEET
         507
                      UU9(11=UF(1)
         508
SHEET
         509
                      UU7(1)=U7(1)
SHEET
         510
                      17=3+1-1
                      IR=17-1
         511
SHEET
                      TECH(IR) .EO. 0.)60 TO 102
COFT #ARS(UR(I)/F(IR))
SHEET
         513
                 102 1F(B(17) .EQ. 0.160 TC 103
COF?=ABS(UZ(1)/E(17))
         514
SHEFT
         515
                      A1=AMINI(A1,CDF1,CDF2)
SHEET
         516
                 103 CONTINUE
SHEET
SHEET
         518
SHEET
SHEET
                 105 CONTINUE
                      IF(CONCOF .EO. 1.1A2=A2#5.
IF(A1 .EO. 1.0 .AND. A2 .GT. 10.1COF1=5.
SHEET
         521
         522
SHEET
                      IF(COF1 .EQ. 0.1CCF1=2.
SHEET
         523
SHEET
         524
SHEET
         525
                       IF(A) .LT. .000011GC TO 2300
SHEET
         526
                      IF(A1 .GT. 1.C) A1=1.0
                      ACOSF=A1
SHETT
         527
SHEET
                      WEITE (5 . 104 ) 41
SHEET
         529
               c
SHEET
         530
SHEET
               531
SHEET
         532
                      OPTAIN NEW VALUE
SHEET
         533
SHEET
SHEET
         535
                      00 130 1=1. NUMNP
SHEET
                      17=3+1-1
         516
SHEFT
         537
                      IR= 17-1
CHEET
         538
                      15=17+1
SHEET
                      UP(1)=UUP(1)
SHEET
         540
                      U7(1)=UUZ(1)
SHEET
         541
                      UR(I) =UF(I)+P(IR)+ACDEF
SHEET
                      U7(11=UZ(11+B(17)*+CDEF
SHEET
         543
                      SLOF(1)=SLOP(1)+E(15)+ACDEF
                 130 CONTINUE
         544
SHEET
         545
               C
SHEET
         546
                      WPI TE (6 .1016) K
         547
                      WRITE(6,1006) K
SHEET
         548
SHEET
         549
SHEET
         550
SHEET
         551
                     COMPUTE NORM OF ERPCE AND NORM OF SOLUTION.
               SHEET
         552
SHEET
         553
                      ENCRM = 0.
SHEET
         554
SHEET
         555
                      SNORM = C.
                      DO 134 1=1 . NUMNE
SHEFT
         556
SHEET
         .57
                      17=3+1-1
SHEET
         558
                      IR= 17-1
                      15=17+1
SHEET
                      ENORM = ENORM + P(|P|)*B(|F) + P(|Z|)*P(|Z| + P(|S|)*P(|S)
SNCRM = SNORM + UP(|T)*UP(|] + UZ(|T)*UZ(|T) + SLOP(|T)*SLOP(|T)
SHEET
         560
         561
SHEET
SHEET
         563
               c
SHEET
         564
                      ENORM = SORT(ENORM)
SNCRM = SORT(SNCRM)
SPEET
         565
SHEET
         566
SHEET
                      ESNORM = ENORM / SNORM
SHEET
                      WRITE(6,1015) SNORM, ENCRM, ESNORM
DO 776 I=1, NUMBE
         568
         569
SHEET
         570
                       17= 2+1-1
SHEET
         571
                      TP=17-1
         572
                      15=17+1
SHEET
         573
                       WRITE(6,1002) I,R(]R),E([7),E([5),UR([],UZ([],SLOP([],R([],Z([])
                 775 CONTINUE
SHEET
         574
SPEET
         575
SHEET
         575
                 131 CONTINUE
         577
SHEET
         578
SHEET
         579
                                                                *********************
SHEET
         590
SHEET
                      COMPUTE STRAIN FROM THE NEW GUESS.
EDS(1.N)=INCREMENT OF MERIDIAN STRAIN
         581
               C
         582
```

```
EPS(3.N)=INCREMENT OF TANGENTIAL STRAIN EPS(3.N)=INCREMENT OF THICKNESS STRAIN
SHEST
             c
       504
SHFET
SHEET
       585
             C **********************
SHEET
       585
             C
SHEET
       527
SHEET
       589
SHEET
       SAG
                  CO 400 N=1 . NUMEL
SHEET
       590
                  NP 1 =N+1
SHEET
       591
                   DLL=DL(N)
                   SPH=SPHI (N)
SHEET
       592
SHEET
       593
                   CPH=CPHI(N)
       594
SHEET
                   AU=UR (N)+UR(NF1)
                   AR=R(N)+R(NP1)
SHEET
       595
SHEET
       595
                   DREF(N)-F(NP1)
SHEET
                  D?=Z(NP11-Z(N)
       557
SHEET
                   DU=UP(N)-UR(NP)
CHEFT
       599
                  DW=UZ(NF1 1-UZ(N)
SHEET
       500
                  EX1=1.+2.*PR*DU/DLL/DLL+2.*P7*DW/DLL/DLL+(0U*DU+DW*DW)/DLL/DLL
SHEET
       601
             C
SHEET
       602
                  EPS(1.N) =ALOG(EX11/2
                   EPS(2.N)=ALOG(1.+AU/AR)
SHEFT
       603
                   EPS (3.N) =- EPS (1.N) - EPS (2.N)
SHEET
       604
       605
              ADD CONTINUE
SHEET
       606
                  TEST=0.0
SHEET
       607
SHEET
       608
SHEFT
       609
SHEET
       610
             SHEET
                  COMPUTE INCREMENT OF EFFECTIVE STEATH
       611
SHEET
       512
SHEET
       613
SHEET
       614
                  WEITE (5.1026) NSTEP
SHEET
       615
                  DD 222 N=1 . NUMEL
                   NP1=N+1
SHEET
       616
SHEET
       617
                  IFICCOE(N) .EG. 3.0 .AND. CODE(NP1) .ED. 3.0160 TO 222
                  ESEPS(1.N)
SHEET
       618
                  ET=EPS (2, N)
SHEET
       619
SHEET
       620
                  RBAR=RD1*(ES*ES+ET*ET) + 2.*PVALUE*ES*ET
SHEET
       621
             C
SHEET
       622
                  EPS(4.N) =SORT(2.*PCCNST*RPAR/3.)
SHEET
       623
CHEE T
       624
             c
                  STS(1,N)=CLAMDA*(ES + PCISON*ET)*YY(N)/FFS(4,N)
STS(2,N)=CLAMCA*(ET + POISON*ES)*YY(N)/EPS(4,N)
SHEET
       625
SHEET
       626
SHEET
       627
SHEET
       528
             C***********************
SHEET
                  COMPUTE STRESS DISTRIBUTION
       629
             C
SHEET
                   STS(1,N) =MERICIAN STRESS
       630
SHEET
       631
                   STS(2.N)=CIRCUMFERENTIAL STRESS
SHEET
       632
                  STS (3,N) = EFFECT IVE STRESS
             C*****************
SHEET
       633
SHEET
       635
                  IF(ESNORM .LT. FLIMIT)TEST=1.0
SHEET
       636
                  SSESTS(1.N)
SHEET
                  ET=575(2.N)
SHEET
       638
                   EFSTRS=ES+ES+ET+ET-2.*FCISON*FS*FT
SHEST
       639
                  STS(3.N)= SORT(EFSTRS)
SHEET
       540
            C
SHEET
                   WPITE(6, 1003)N, (EPS(1,N), [=1,4)
SHEET
              222 CONTINUE
WRITE(6,1027)
       642
SHEET
       643
       544
                   DO 430 N=1, NUMEL
SHEET
       545
              430 WRITE (6,2251) N. (STS(1,N), [=1,3)
SHEET
       ...
SHEET
             647
SHEET
                  CHECK WHETHER ACCEF IS TOT LARGE TO CAUSE A PHYSICALLY
SHEET
       549
             C
                  UNACCEPTABLE SOLUTION. WHENEVER COMPUTED MEDICIAN STRESS BECOMES
             C NEGATIVE ADJUST ACCEF VALUE )
SHEET
       550
SHEET
       551
SHEST
       652
             C
SHEET
       ...
                  CONCOF = C.O
SHEET
       654
                  STS1=0.0
SHEET
       455
                  DC 431 N=1 . NUMEL
SHEET
       656
                  ND 1=N+1
              IF(CODE(N) .50. 3.0 .AND. CODE(NP1) .EO. 3.0)STS(1.N)=0.
431 IF(STS(1.N) .LT. STS1)CONCOF=1.0
SHEET
       457
SHEET
       658
SHEET
       450
SHEET
       660
             SHEET
                  CHECK WHETHER (ERFOR NORM) / (SOLUTION NORM) IS LESS THAN FLIMIT IF YES, THE SOLUTION IS FINAL
       661
SHEET
       563
       663
SHEET
             SHEET
       664
SHEFT
       ...
SPEET
             c
SHEFT
       457
                  IFIESNORM .LT. FLIMITIGO TO 478
```

```
SHEET
              560
SHEET
                                   15 (K .GE. ITER 160 TO 2307
CHEET
              570
SHEET
              471
              672
                                   DC 1900 N=1.NUMEL
SHEET
SHEET
                                   1F(=PS(4.N) .CT. .000001)G7 TC 1900
SHEET
              F 74
                                   NP1=N+1
SHEET
              €75
                                   DUM =UF (N) +UR (AP1)
SHEET
                                   CODE(NP1)=3.0
SHEET
              677
                                    CODE(N)=3.0
SHEET
              578
                          1900 CONTINUE
SHEET
                       c
              579
SHEET
              680
                          SOUC CONTINUE
SHEET
              581
CHEET
              682
SHEET
              683
                          438 CONTINUE
SHEET
              584
CHEET
              685
                                   IF LESNORM . GT. FLIMITIGO TO 777
SHEET
              686
SHEET
              587
                        C
SHEET
              ...
                                   WEI TE (6 . 2800)
SHEET
              589
SHEET
              600
                                   EXAMINATION ON FOUNCARY ASSUMPTIONS
SHEET
              691
                        C*****
SHEET
              692
SHEET
              693
                                   DC 250 1=1 .NCHECK
SHEET
                                   IF(N .LE. 1)CC TO 250
TOUCH(I)=(Z(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+UZ(N)+PRRAD-PRHED)+(Z(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N)+UZ(N
CHEST
              595
SHEET
              696
SHEET
              697
                                 1+UR(N)1*(R(N)+UR(N))
SHEET
              698
                                   TOUCH(I)=SCRT(TOUCH(I))-PNF AD
SHEET
              699
                                   WEITE(6.2900) N. TOUCH(I)
SHEET
              700
                           250 CONTINUE
                                   WRT TE (6.265)
SHEET
              701
SHEET
              702
SHEFT
              703
SHEST
              704
                        CHEET
              705
                                   COMPUTE THE DISTANCES OF THE FREE NOCE FROM THE DIS PROFILE
SHEET
              706
                        SHEET
              707
                        C
SHEET
              708
                                   RDIE=FT+RT+CIERAC
SHEET
              709
                                   DO 250 1=1.NCHECK
CHEET
             710
                                   N=NCONT C+ I
SHEFT
                                   CONTAC(I) = (DIEFAC-Z(N)-UZ(N)) + (DIERAC-Z(N)-UZ(N))+(RDIE-P(N)-UF(N)
              711
SHEET
              712
                                 1 ) * ( RO 1 = - P ( N ) - UF ( N ) )
SHEET
              713
                                   CONTAC(1)=SGRT(CGNTAC(1))-DIERAF
SHEET
              714
                           260 WRITE(5.270)N.CONTAC(1)
SHEET
             715
                                   IF(ABS(TOUCH(1)) .LT. .0001)TCUCH(1)=0.
IF(ABS(CONTAC(1)) .LT. .0001)CCNTAC(1)=0.
SHEET
SHEET
              717
SHEET
             718
SHEET
              719
SHEET
             720
                                  CHECK ON BOUNCARY OVER PUNCH HEAD
                        SHEET
              721
SHEET
             722
SHEET
             723
                                   1F(TOUCH(1) .CE. 0.160 TO 3000
SHEET
             724
SHEET
             725
                                  WEITE(6.3100)
SHEET
              724
                        SHEET
             727
                        C NCDE AT NCHM1 IS INSITE PUNCH, COMPUTE AGAIN
SHEET
             728
SHEET
              729
SHEET
             730
SHEET
             731
                                   TCHCOF = 0.0
                                   TINSDE=0.0
SHEET
             732
SHEET
                                  GO TC 2101
SHEET
             734
                        c
SHEET
             735
                          3000 CONTINUE
SHEET
              736
SHEET
              737
                                   TCHCOF=1.0
CHEET
             738
SHEET
             739
SHEET
              740
                                   CHECK ON BOUNCARY OVER DIE PROFILE
                        SHEET
             741
SHEET
             742
                        C
SHEET
              743
                                   IF (CONTAC(1) .GE. 0.)CD TO 3500
SHEET
              744
SHEET
             745
                        C***********************
SHEET
              746
                        C NODE AT NCONTC+1 IS INSIDE DIE, COMPUTE AGAIN
SHEET
SHEET
             74 R
              749
SHEFT
SHEET
              750
                                   NCONTC=NCONTC+1
                                   AC1 =NCOATC-1
FRNFCE(NCONTC)=FRNFCE(NC1)
SHEET
              751
SHEET
              752
```

```
754
755
                      60 TO 2101
SHEET
                3500 CONTINUE

IF(NDEX .EQ. 2)GC TC 3501

IF((R(NDIE)+UP(NDIE)) .GT. PDIE)GC TC 3501
SHEET
SHEET
        756
SHEET
SHEET
SHEET
        759
750
                      WRI TE (6 . 3450)
SHEET
         761
               C NOTE NODE HAS REEN REQUIRED INTO CONTACT WITH DIE PROFILE
         762
SHEET
SHEET
         764
               c
SHEET
         765
                      FRNFCE(NCIE)=C.0001
SHEET
                      GO TO 2101
SHEET
         757
SHEFT
                3501 CONTINUE
SHEET
         769
                      TINSDE= 1.0
         770
                      TEST=1.0
SHEET
SHEET
        772
               C***************
SHEET
                    COMPUTATION OF FRICTICA CORFFICIENT
SHEET
         774
               C******************************
               C
        775
SHEET
         776
SHEET
         777
                      PPN+FD=PNHED
SHEET
        778
                      WRITE (6.233) (FRNFCE(N), N=1, NUM1)
SHEET
         779
                      WRITE(6.231)
SHEFT
        780
               C
SHEET
         781
                      DO 230 1=1.NUM1
                      17=3+1-1
SHEET
        782
                      IR= [Z-1
SHEET
         783
                      IN=(Z-I

|F(CODE(I) .E0. 3.0)GC TO 230

|F(I .GE. NTOUCH)CD TO 280

|F(I .LE. NCCNTC .AND. I .GT. NDIE)CD TO 281

|F(I .LT. NTOUCH .AND. I .GT. NCONTC)GD TO 230

|F(NDEX .E0. 2)CD TC 230

|F(I .LE. NDIE)GD TC 282
SHEET
SHEET
        785
786
SHEET
         787
CHEET
        788
789
SHEET
              280 CONTINUE
SHEET
        790
SHEET
        791
         792
                      DUM 1= (Z(1)+UZ(1)+PNPAD-PPNHED)/PNFAD
SHEET
SHEET
         793
                      JUM2=(R(I)+UF(I))/FNRAC
         794
                      FRITN=FRITNP
SHEET
         795
                      IF(FRITH .EQ. 0.160 TO 230
SHEET
         796
                      GO TO 283
SHEET
         797
               C
SHEET
         798
                 281 DUM1=DIERAD-Z(1)-U7(1)
SHEFT
         799
                      DUM 2=RDIE-R(I)-UR(I)
SHEET
                      FRITH=FRITHD
         900
SHEET
         e01
                      IF(FRITA .EC. 0.)GC TC 230
SHEET
         802
                      GO TO 283
SHEET
               C
SHEET
                282 DUM 1=1.
DUM 2=0.
         904
         805
SHEET
                      FRITN=FRITND
SHEET
         807
                      IF(FRITH .EQ. 0.)GO TC 230
              C 283 CONTINUE PN=FF(IZ
SHEET
         908
SHEET
         909
                      PN=FF(IZ)*DUM1+FF(IF)*DUM2
SHEET
         810
SHEET
                      PT=FF(17)*DUM2-FF(1F)*DUM1
         911
                      IF(PN .50. 0.)GG TC 23C
SHEET
         812
SHEET
         913
SHEET
                      WR! TE (6.232) 1 . XMU
SHEET
         815
                      XMU=XMU/FRITN
                      IF(XMU .GT. 1.02 .CR. XMU .LT. .QP)MUDEX=1
FRNFCE(I)=FRNFCE(I)/XML
SHEET
         916
SHEET
         917
SHEET
         RIA
                      IF( I .EG. NCONT C)FPN=-FN
SHEET
                  230 CONTINUE
         619
SHEET
         820
                 234 CONTINUE
SHEET
         A 21
SHEET
SHEET
         923
         924
SHEET
                      MUDEX=0. IF FRICTION CONDITION IS SATISFIED
               C =1. CTFEFWISE
SHEET
         826
         827
SHEET
         828
SHEET
         829
               C
SHEET
         8 30
                      IF ( WUNEX .EO. 1) TCHCOF = 1.0
SHEET
         931
                      IF (MUDEX .EG. 1)60 TO 2001
SHEET
               C
         832
         833
SHEET
                      ICHECK =0
SHEET
SHEET
         935
                      GENERALIZED NODAL FORCE NORMAL TO THE DUNCH IS COMPUTED TO CHECK WHETHER THE BOUNDARY IS ASSUMED TO MOVE TOO FAST.
SHEET
         836
SHEET
```

```
SHEET
       RIA
             SHEET
       940
                   IFICODE(NTOUCH) .EQ. 3.0160 TO 500
SHEET
       841
SHEET
                   IF(FF(NZZ) .CT. 0.) GO TO 500
IF(ARS(FF(NZZ)) .LT. .000001 .CP. TINSCE .FQ. 0.)GO TO 500
SHEET
       843
       944
SHEET
SHEET
       945
                   TD I ST = TOUCH 3 . A
                   WRITE (5.510)TCIST
SHEET
       945
SHEFT
       847
                   NTOUCH=NTOUCH+1
SHEET
       RAR
                   TC+COF=1.0
SHEET
       849
                   ICHECK =1
SHEET
       950
               500 CONTINUE
CHEET
       851
SHEET
       852
SHEET
       853
SHEET
       854
             C****************
             C GENERALIZED NCDAL FORCE NORMAL TO DIE 15 COMPUTED.
SHEET
       955
SHEET
       956
       857
SHEET
       858
                   IF (CODE (NCONTC) .FO. 3.C)GO TO 550
SHEET
       959
                  IF (NCCNTC .EQ. NCIE) 60 TO 550
IF (PPN .GT. -.000001) 60 TO 550
SHEET
       850
SHEET
       862
                   TCONTC=TCONT3# . 8
SHEET
                   WRITE ( 6. 54 9 ) TOONTO
       963
SHEET
       864
865
                   NCCATC=NCONTC-1
SHEET
       866
               550 CONTINUE
SHEFT
       867
SHEET
       968
SHEET
             C ICHECK=1. IF EDUNCARY ASSUMPTION NEFTS TO PE MODIFIED.
       959
       870
SPEST
SHEET
       872
                   IFFICHECK .EQ. 1160 TC 446
SHEET
       A73
                   NNCONC = NCONTC
SHEET
       874
             SHEET
       275
             C MAKE BOUNDARY ASSUMPTION FOR NEW STEE RASED UPON
SHEET
SHEET
       977
                  THE DISTANCE AWAY FROM PUNCH OF DIE
SHEET
       878
             C************************************
SHEET
       879
SHEET
       989
                   DO 550 1=1.NC+ECK
                   15(CONTAC(1)-TCONTC)561.562.562
SHEET
       991
              SET NCONTCENNCONC+1
SHEFT
       802
SHEET
       PPZ
                  TCONT2=CONTAC(1)
               550 FRNECE(NCONTC )=FRNECE(NNCONC)
SHEET
       884
SHEET
       9.95
               S62 CONTINUE
SHEET
       886
SHEET
       887
SHEET
SHEET
       999
SHEET
       990
       991
SHEET
                   NNTCH=NTOUCH
                   DO 240 I=1.NCFECK
IF(TOUCH(I)-TDIST)245.246.246
SHEET
       992
       893
SHEET
       804
               245 NTOUCHENNTCH- I
                   TOUCH2 = TOUCH(1)
SHEFT
       855
                   FRNFCE(NTOUCH) = FRNFCE(NNTCH)
SHEET
       896
SHEET
       807
               240 CONTINUE
246 TCHCOF=1.0
SHEET
       898
SHEET
       899
SHEET
       900
             SHEET
       901
SHEET
       902
SHEET
       903
SHEET
                   WRITE(6.1043)
       904
SHEET
       905
                   00 444 N=1 -NUMEL
00 443 I=1 - 4
SHEFT
       906
               443 TEPS(1.N)=TEPS(1.N)+FPS(1.N)*TEST
SHEET
       907
                  IF(5SNORM .LT. FLIMIT)THICK(N)=THICK(N)*EXP(EPS(3,N)*TEST)
WRITE(6,1003)N,(TEPS(1,N).1=1.4)
CHEST
       908
SHEET
       900
SHEET
       910
SHEET
       011
SHEET
       912
SHEET
SHEFT
       914
SHEET
       915
SHEET
       916
                   COMPUTE OPNHED FOR NEXT STEP WHICH WOULD GIVE THE INCREMENT OF MAXIMUM EFFECTIVE STRAIN APPROXIMATELY EQUAL TO PRESET VALUE.
SHEET
       017
SHEET
       918
SHEET
       919
                   E WAX = 0 . 0
       920
               00 775 N=1.NUMEL
775 IF(=DS(4.N) .GT. EMAX) EMAX=EDS(4.N)
SHEET
SHEET
       922
```

```
EFACTA = ECONST/FWAX

IF(NSTER .LE. 2 .AND. ITCOMT .ED. 01GD TO 778

DPAFED= 2./EFACTA/UZ(NUMNP)-1./EFACT/DPMSTR
CHEET
         923
SHEET
         974
SHEET
         925
SHEET
         926
                       DONHED=1./DONHED
CHEST
         927
                       ESTAR = DONHED/L7(NUMNO)
SHEET
         528
                       DONSTEL ! (NUMAF)
                  778 CONTINUE
SHEET
         929
SHEET
                       EFACT=EFACTA
         930
CHEET
         931
SHEET
         932
SHEET
         533
SHEET
                  777 CONTINUE
         974
SHEET
         975
                       IFIESNOEN .GT . FLIMIT ITCHCOF=1.0
SHEET
         936
                937
SHEET
         912
                      NEW CONFIGURATION
SHEET
         919
         940
CHEET
         941
                       DC 439 1=1. NUMAE
SHEET
         942
                       17=3+1-1
SHEET
                       [P= 17-1
                       R(1)=R(+)+UR(1)*TEST
SHEET
         944
SHETT
         945
                       Z(1)=Z(1)+UZ(1)*TEST
SHEET
SHEET
         947
         948
SHEET
         949
                SHEET
         950
SHEET
         951
         9=2
SHEET
SHEET
         953
SHEET
                       IF (NOUNCH .ED. 0) GC TC 310
SHEET
         355
                 SUNITINCS TOES
                       PUNCH 1017. (UR(1).U7(1).CCDE(1).1=1.NUMNP)
SHEFT
         055
                       PUNCH 1017. (R(1).7(1).1=1. NUMP)

PUNCH 1017. ( TEPS(1.N).1=1.4). N=1. NUMPL)

PUNCH 1017.(THICKIN).N=1.NUMEL)
SHEET
         957
SHEET
         954
SHEET
         939
                       PUNCH 2223. PNED. NTOUCH. TOHODE, SEACT , NCONTO
SHEET
         950
CHEFT
         951
                       PUNCH 235, (FRNFCE(N). N=1. NUM1)
                       PUNCH 233. FSTAF . DPN STR . DPNHED . TEST
SHEET
         962
SHEET
         953
                  310 CONTINUE
SHEET
         944
SHEET
                       IF(ESNORM .GT. FLIMITIEC TO 2300
         965
SHEET
SHEET
         967
SHEET
         958
                       WEITE (5.1040)
SHEET
                       DO 849 1=1.NUNNO
                       10=3#1-2
SHEET
         370
         971
                       17 = 1R+1
                       IL=IZ+1
WRITE(5,1041)(I,FF(IP),FF(IZ),FF(IL))
SHEET
         972
SHEET
         973
SHEET
         974
         975
SHEET
         976
                C COMPLIES THE PUNCH LCAD FROM ENERGY BALANCE
SHEET
         977
SHEET
         978
SHEET
SHEET
         980
SHEET
                       SUME =0 .
         991
SHEET
                       20 850 1=2.NUMNE
SHEET
                       17=1=3-1
         FRP
         994
SHEET
                       1 R = 1 7 - 1
SHEET
         985
                  850 SUMF=SUMF+FF(17)*U7(1)+FF(12)*UP(1)
SHEET
         946
                       SUMF=SUMF/UZ(NUNNF 1/TEST#2.#3.14
SHEET
SHEET
         988
                       WRITE (6.1042) SUNF
SHEET
                       FEINSTOF .EQ. 1) GC TO 2300 WRITE(6, 1028) FPNHED .NNTCH
         989
SHEFT
SHEFT
         991
                       WFTTE(6,1029)EMAX,U7(NUMNP),EFACT
SHEET
                       IF(NSTEP .LT. NEDEM) GC TO 2100
         992
SHEET
                 2300 CONTINUE
         993
SHEFT
         COA
                 2301 CONTINUE
SHEET
         995
SHEET
         996
SHEET
                 1002 FORMAT(15,3F13.7,5x.3F13.7,5x.3F13.7)
         997
SHEET
                 1003 FORWAT ( 17, 11F11.6)
                 1004 FORWAT(1615)
1005 FORMAT(1H1.* STRAIN-STRESS SOLUTION AT STEP NUMBER =*.14//
1 * EL. NC...R-STRAIN...Z-STRAIN...F-STRAIN...F-STRAIN...EF-STRAIN
SHEET
         900
SHEET
        1000
SHEET
CHEET
        1002
                      2... 9- STRES... Z-STRES... TH-STRES... FZ-STRES... FF-STRES... AVC-STRES...
SHEET
        1003
                 1006 ECOMAT(/// 30x, * DISFLACEMENT SCLUTION AT ITERATION NUMBER =*.14
1/// 20x, * PLRYUPRED*, 26x, * TOTAL*, 20x, * DEFORMED COCRD*/
2/ * NP CU DW DRETA U
7 PETA R 7*1
SHEET
        1004
SHEET
        1005
        1006
SHEET
        1007
```

```
SHEET
         1008
SHEET
          1079
SHEFT
SHEET
          1011
         1012
                          14......Z-FCFCF.....Z-FCFCF.....Z-STPESS ON DIE SUR
CHEET
          1013
SHEET
          1014
                     1011 FCGWAT (15, 3F10.0)
         1015
SHEET
          1016
                     1012 FORMAT(15, EF17.5)
1015 FORMAT(60X, * VELDCITY CONVERGENCE* . /
SHEET
         1017
                     1 60%, * NCRM OF SOLUTION VECTOP =**, F13.8

1 / 60%, * NCRM OF EEROF VECTOF =*, F13.8

2 / 60%, * FRACTIONAL NORM =**, F13.8)

1016 FORMAT( * DISPLACEMENT SOLUTION AT ITERATION NUMBER =*, [4])
SHEET
          1010
SHEET
         1019
         1020
SHEET
          1021
                     1017 FORMAT(9F10.7)
SHEET
          1022
                     1018 FORMATE ////* PCES NCT CONVERGE*//
          1023
                           1* TRY AGAIN WITH DECELLERATION COFFFICIENT =ACCEF= LESS THAN*.
SHEET
          1024
SHEET
         1025
SHEE"
          1026
                     1025 FORMAT(4x, 15.3x,F12.6,10x,15.3x,F12.6,10x,15.3x,F12.6)
2251 FORMAT(15,4F20.7)
SHEET
          1027
SHEET
         1029
SHEET
          1029
                     1025 FORMAT(///*INCREMENTAL STRAIN-TOTAL STRAIN AT STEF NUMPER=#. 14//
                         I WEL NO.... S-STRAIN ..... THE-STRAIN ..... THI-STRAIN ..... EF-STRAN
SHEET
         1030
SHEET
          1031
                     1027 FORMAT(///*EL. NC....S-STRESS....THE-STRESS....FF-STRESS....*)
1042 FORMAT(* PUNCH FORCE=#.F15.7)
SHEFT
         1072
          1033
SHEET
CHEET
          1034
                     1047 FORWAT(///#EL NO....S-STRAIN.....THF-STRAIN....THI-STRAIN....
SHEET
         1035
         1036
                     1041 FORMAT(5x, [10,5x,3F20.7]
                     1040 FORMAT(//* NT. OF NODE FORCE*)
510 FORMAT(//* NTOUCH IS FORCED TO TOUCH, COMPUTE AGAIN
CHEET
          1037
SHEET
         1038
SHEET
                          1*./* TCIST=*.F10.7)
                     1030 FORMAT(/17.3F1C.5)
1031 FORMAT(* GEOMETRY OF PROFILE*//
SHEET
          1040
SHEET
         1041
                      1 *SL NNO....ANGLE....THICKNESS....*)
104 FORMAT(//* ACCEF CALCULATED*.F10.7)
265 FORMAT(//* CHECKING DISTANCE AWAY FROM DIE*)
SHEET
          1042
SHEET
          1047
SHEET
         1044
CHEE-
          1045
                      270 FORMAT(15.F2C.7)
                     2900 FORMAT(/110,F20.7)
SHEET
         1046
                     2800 FORMAT(//#
                                           CHECKING DISTANCE ANAY FROM PUNCHE.
                     1# SLEM NO. TOUCH#/)

3100 FDSMAT(* NOCE AT NCHMI IS INSIDE PUNCH. COMP AGAIN*)

3400 FDSMAT( /* NOCE AT NCCHTC+! IS INSIDE DIE. COMP AGAIN*)

3450 FDSMAT( /* NOCE NOCE HAS BEEN BROUGHT INTO CONTACT WITH CORNER*/)

231 FOSMAT( /* NCCAL PCINT COEFFICIENT*, /)

549 FDSMAT( /* NCCNTC IS FORCED TO TOUCH. TCCNTC=*, F10.7)
SHEET
         1048
CHEET
         1049
         1050
SHEET
         1051
         1052
SHEET
         1053
                      232 FCRMAT(110.F10.E)
SHEET
         1054
         1055
                      233 FORMAT(5F15.7)
SHEET
         1056
                       235 FORVAT(4F15.7)
                    235 FORWAT(F15.7)

2227 FORWAT(F15.7, I5.2F1F.7, I5)

1028 FORMAT(* PUNCH HEAD DISPLACEMENT*, F10.F/* NTOUCH= *, I5)

1029 FORMAT(/2/* MAX EFFECTIVE STRAIN INCREMENT**, F10.7/* PUNCH

1 HEAD INCREMENT=*, F10.7./* PUNCH HEAD ADJUSTING FACTOR=*, F10.7
SHEET
         1057
         1058
SHEFT
         1059
SHEET
         1050
         1051
SHEET
         1052
SHEET
         1063
                            RETURN
SHEET
```

```
SUBPOUTINE STIFF(F.Z.LF.UZ.CODF.SLOP.YY.YX.SPHI.CPHI.DL.EFS.
SHEET
        1066
                        ITHICK . ALTHA . GAMMA . ETA . FRN FCE . FF . A . B . NO )
        1057
CHECT
        106A
SHEET
        1059
SHEET
        1070
                 C CALCULATION OF STIFFNESS MATRIX FOR ENTIPE SYSTEM
SHEFT
        1071
        1072
SHEET
         1073
                         COMMON/GENCON/NUMMP.NUMEL. HED(12) DLL. NEG. NFOPM. Y IELD. TEST. ITER.
SHEET
                        INREAD, NPUNCE, NEGINT, EVALUE, T. WRAND, PNEAD, PADIUS, FRITNP, FRITND,
        1074
SHEET
                        SECONST. FNHED, FTHRT, CIERAD, TCONTC. TDIST, PHECE
        1075
                        OIMENSION R(1),7(1),CCCE(1).UF(1),UZ(1),SLCP(1),R(1),A(NG,1),
1 EFS(4,1),RR(2),ZZ(2),UU(6),YY(1),THICK(1),DL(1),SPH1(1),CPH1(1),
SHEET
        1076
SHEET
        1077
                        2 YX(1).ALPHA(1).GAWWA(1).ETA(1).FRNFCE(1).FF(1)
COMMON/STEMAT/M(E).P(E.6).TEX.TEY.TEZ.THKL
COMMON/CONGUAD/SS(4).WT(4).O(2.2).SOFT1
SHEET
         1078
SHEFT
        1079
SHEET
        1000
SHEET
        1081
                         COMMON/ATOLCH/NTOUCH.NDIE.NCONTC
CHEET
        1 092
        1003
        1084
SHEET
                  ~************************
                         INITIALIZE A AND P MATRIX FOR EQUATION AX=P
RECAUSE RANDED SYMMETRIC PROPERTY OF THE STIFFNESS MATRIX A.
THE STORAGE OF A IS IN A SQUARE MATRIX
SHEET
                 C
SHEET
        1096
SHEET
        1097
        1098
```

```
SHEET
           1089
                                     OC 50 N=1 . NEC
SHEET
            1090
SHEET
             1091
                                     B(N)=0.
                               50 50 M=1.MBAND
SHEET
            1092
SHEET
            1057
TERHS
            1794
                                     WT(1)=0.3478548451
            1095
SHEET
                                     WT (2)=0.6521451549
SHEET
            1096
                                     WT(3)=WT(1)
                                     WT(41=WT(2)
SHEET
            1097
SHEET
            1058
SHEFT
            1099
SHEFT
                         C******
            1100
                                                                                *****************
SHEET
                                     CONSTRUCT P AND H AT FLEMENT LEVEL
            1101
                         C**********************************
SHEET
            1102
CHECT
            1103
SHEET
            1104
                                     00 1000 N=1. NUMEL
SHEET
            1105
                                     NE1 = N+1
SHEET
            1106
                                     IF(CODE(N) .EQ. 3.0 .AND. CODE(NP1) .EQ. 3.0) GC TO 1000
SHEET
                                     DLL =DL (N)
            1107
SHEFT
            1100
SHEET
             1109
                                     CDH=CDHI(N)
CHEET
            1110
                                     RP(1)=R(N)
SHEFT
                                     72(1)=7(N)
            1111
SHEET
                                     PR(2)=R(NP1)
            1112
CHEET
            1113
                                     LU(1) =UR(N)
SHEET
                                     UU(2)=U7(N)
            1114
                                     UU(3)=SLCP(N)
SHEET
            1115
SHEET
                                     UU(4) =UR(NP1)
SHEET
            1117
                                     UU( $ 1=U7 (NP 1 )
SHEET
                                     UU(6) =SLCP(NF1)
            1118
SHEET
            1119
                                     THKL=THICK(N) +DLL
SHEET
            1120
                                     ZZ(21=7(NP1)
SHEET
            1121
                                     YG = YX(N)
SHEFT
            1122
SHEET
            1123
                         C
SHEET
            1124
                                     CALL QUADIER.ZZ.UL.DLL.SPH.CPH.YG.YH)
SHEET
            1125
            1126
SHEET
            1127
SHEET
            1128
                         PERFORM THE ASSEMBLY OPERATION. RECAUSE MATRIX A IS SYMMETRIC CNLY UPPER HALF OF THE MATRIX IS CREATED. AND THE STORAGE FOR
SHEET
            1129
                         C
SHEET
            1130
                         C MATRIX A IS A SOUAFF APPAY RECAUSE OF RANGEL SYMMETRIC PROPERTY
SHEET
            1131
SHEET
            1132
            1133
                         C
SHEET
            1134
                                     00 200 I=1, 6
CHEFT
            1135
                                     11=N#3 - 3 + 1
                                     R(II)=R(II)++(I)
SHEET
            1136
SHEET
            1137
                                    DC 200 J=1. 6
SHEET
            1178
SHEET
            1139
                                     JJ=N#3-3+J-11+1
                                    IF(JJ .LT. 1) GC TC 200
SHEET
            1140
SHEET
                                    A(11.JJ)=A(11.JJ)+P(1.J)
            1141
SHEET
            1102
                             200 CONTINUE
SHEET
            1143
                           1000 CONTINUE
SHEET
            1144
SHEET
            1145
                         C TO HANDLE MIXED BOUNDARY CONDITION, FOLLOWING MATRICES ARE EVALUATED CHRARACTURES AND SCHOOL STREET, AND S
SHEET
            1146
CHEET
            1147
SHEET
            1148
                         C
                                    C=PNRAD-PNHEC
SHEFT
            1149
SHEET
            1150
                                    NWF1 = NUMNP-1
                                    PONRAD =PNRAD
SHEET
            1151
SHEFT
            1152
SHEFT
            1153
                         c
SHEET
            1154
                                    00 1200 N= 1 - NMP 1
            1155
                                     IF(CODE(N) .NE. 4.0160 TO 1200
SHEET
CHECT
                                     DUM 2=RD [E-P(N)-UP(N)
SHEET
            1157
                                     DUMI=DIERAD-Z(NI-UZ(NI
SHEET
            115A
                                     DNR .D =DI ERAD
SHEET
            1159
                                     IFIN .LE. NCONTCIGO TO 1100
SHEFT
            1160
                                     ENGAD - FENRAL
SHEFT
            1161
                                     DUM 2=P(N)+UP(N)
                                     DUM1=C+2(N)+UZ(N)
SHEET
            1162
SHEET
SHEET
            1164
                           1100 CONTINUE
SHEET
            1145
                                     ALFHA (N) =- CUME/ CUMI
            1146
                                     GANNA(N) = (PNRAC+PKPAC-DUN2*DUN2-DUN1*DUN1)/2./DUN2
SHEET
            1167
                                     ETA(N)=FRNFCE(N)+PNRAD/DUM2
                                     IF(N .GE. NTDUCH)GC TC 1200
GAMMA(N) =-GAMMA(N)
SHEET
            1168
SHEET
            1169
                                     ETA(N)=-ETA(N)
SHEET
            1170
SHEET
            1171
                           1200 CONTINUE
SHEET
            1172
SHEET
                          <del>Cas 44***************************</del>
```

```
1174
SHEET
                      STORE GENERALIZED NODAL FORCE
SHEET
               C***********
       1175
SHEET
       1176
SHEET
       1177
                      NUM 3 = NUMNP#3
                      DC 1300 I=1 ,NUM3
       1178
       1179
SHEET
                1300 FF(1)=-9(1)
SHEET
       1180
       1181
SHEFT
SHEET
       1192
       1193
SHEET
SHEET
       1184
                1001 FORMATI ///. THE DIAGONAL VECTOR OF MATEIX OF STIFFNESS#/)
SHEET
       1185
                1002 FORMAT(12811.3)
1005 FORMAT(// 29H ELFMENT WITH NEGATIVE AREA =. TE)
SHEET
       1186
SHEET
SHEET
       1188
                      RETURN
SHEET
       1189
SHEET
      1191
                      SURROUTINE GUAD (PR. ZZ. UU. DLL. SFF. CPH. SZ. S1)
                      COMMON/STEMAT/H(6),P(6.6),TEX.TEY.TE7,THKL
SHEET
       1192
SHEET
       1193
                       COMMON/CONGUIE/SSIA), DTIA), DI2, 21. SGFT1
                      DIMENSION RE(2) .27(2), LU(6) .8(2.6), XX(6.6) . PZERC(6) . DE(2.6)
SHEET
       1194
SHEET
       1105
                      COMMON/ISOTPY/P VALUE
SHEET
       1196
               c
SHEET
       1197
                      PC=(PR(1)+RR(2))/2.
SHEST
       1198
SHEET
       1150
                      DO 2 1=1.6
SHEET
       1200
                      H(1)=0.
SHEET
                      DC 2 J=1.6
       1201
SHEET
       1202
                    2 P(1,J)=C.
SHEET
       1203
                      TEX=0.
       1204
SHEET
SHEET
       1205
                      TE 7=0.
               c
SHEET
       120€
SHEET
       1207
SHEET
       1208
                      DZ=ZZ(2)-ZZ(1)
SHEET
                      DR=ER(1)-PR(2)
       1200
SHEET
       1210
                      DU=UU(1)-UU(4)
SHEET
       1211
                      DW=UU(5)-UU(2)
                       AU=LU(1)+UU(4)
SHEET
       1212
SHEET
                       AR=ER(1)+RR(2)
SHEET
       1214
SHEET
       1215
                      C1=2.*D=/DLL/DLL
                      C2=2.*DU/CLL/CLL
C3=2.*D7/DLL/DLL
SHEET
       1216
SHEET
       1217
                       C4=2.*0W/DLL/CLL
SHEET
                      C5=AU/AP/2.
C6=1.+DR*C2+DZ*C4+(DU*DU+DW*D*)/DLL/DLL
SHEET
        1210
SHEET
       1230
       1221
                       C7=2./OLL/OLL
CHEET
       1222
                      CR= 2. /AR/AR
SHEET
                       C9=1./SOFT(C6)/2.
       1223
CHEFT
        1224
                       C10=C9/C6
SHEET
       1225
                      C11=C1+C2
SHEET
       1226
                      C12=C3+C4
CHECT
        1227
SHEET
        1228
SHEET
        1256
SHEET
       1230
                      DES1=SORT(CE)
                      DET1=2.*C5+1.
       4231
SHEET
SHEFT
        1232
SHEET
        1233
                       E1=C9*C11/DES1
SHEET
                       E2=-C9*C12/CES1
       1234
SHEET
        1235
                      E3=-E1
SHEET
       1236
                       54 =- E2
        1237
                       SE=1./AR/DETI
SHEET
        1238
                       E5=(-C10*C11*C11/2.+C5*C7)/DES1-F1*F1
SHEET
        1239
                       F7=-EF
        1240
                       58=C10*C11*C12/2./DES1-51*62
CHEET
        1241
                       F0=-F8
-
                       £10=58
        1242
                       511=(-C10*C12*C12/2.+C9*C7)/CES1-E2*E2
SHEET
SHEET
        1244
                       512=-55*E5
CHEET
        1245
               C**********************************
        1246
                      DESEMENTDIAN STRAIN INCREMENT
DETECTICUMERRENTIAL STRAIN INCREMENT
COMMUTATION OF EFFECTIVE STRAIN INCREMENT
ELECTIVATIVE OF MERIDIAN STRAIN INCREMENT WITH RESPECT TO UU(1)
SHEET
        1247
SHEET
        1244
SHEET
        1249
CHEFT
        1250
                C
SHEET
        1251
                         =D(CES)/C(UL(1))
       1252
                       52=0(055)/D(UL(2))
SHEET
SHEET
                       F4=D(D=5)/D(UL(5))
```

```
CHEET
       1255
                     E5=D(DET)/D(UL(11)
       1254
               c
                     E #= C( E1 ) / C(UU(1 ))
SHEET
       1257
                     E7=0(E1)/D(LL(4))
SHEET
       1258
                     E9=C(E1)/D(UU(2))
SHEET
                      F9=D(E3)/D(UU(2))
SHEET
       1260
               C
                     510=0 (E4) /D(UU( 5))
SHEET
       1261
                     £11=0(E5)/D(UU(2))
SHEET
       1262
                    ************
SHEET
       1263
               C
SHEFT
       1264
               C
SHEET
       1265
                     DES=ALDGIDES1)
SHEET
       1266
                     DET = ALOG(DET1)
SHEET
                     RVP1=PVALUE+1.
       1267
SHETT
       1258
                     PVP2=SORT(2.*PVALUE+1.)
SHEET
                     RVF3=RVP1/RVF2
       1259
SHEET
       1270
                     RVP4= 2. *FVALUE /FVF1
SHEET
       1271
SHEET
       1272
               C ********************************
                     EFFECTIVE STRAIN
FI=CERIVATIVE OF EFFECTIVE STRAIN INCREMENT WITH RESPECT TO UU(1)
SHEET
       1273
SHEFT
       1274
               c
                     F2=WITH RESPECT TO UU(2)
F3=WITH RESPECT TO UU(4)
F4=WITH RESPECT TO UU(5)
SHEET
       1275
SHEET
       1276
SHEET
       1277
               C
SHEET
       1278
                     F11=0(F1)/0(UL(1))
CHECT
       1279
               C
                     F12=D(F1)/C(UU(2))
                     F13=0(F1)/D(LL(4))
SHEET
               c
                     F14=D(F1)/C(UU(5))
SHEET
       1281
CHEET
       1282
               C
                     F22=D(F2)/D(UL(2))
                     F23=D(F2)/D(UL(4))
SHEET
       1283
               C
SHEFT
       1294
                     F24=D(F2)/C(UU(5))
                     F33=D(F3)/D(UU(41)
SHEET
       1285
               C
                     F34=D(F3)/D(UU(E))
SHEET
       1286
SHEET
       1287
                     F44=D(F4)/D(UL(5))
SHEET
                    **************
       1288
               C***
       1289
SHEET
               C
SHEET
       1290
                     EFS=DES+DES+DET+DET+PVF4+DES+CET
SHEET
                     FFS1=PVF3*SQFT(EFS)
       1291
SHEET
       1292
                     EF S2=GVF3/SCRT(EFS)/2
SHEET
       1293
                     FFS3=-RVP3/EFS/SORT(FFS)/4.
SHEET
       1294
              C
       1295
SHEET
                     D1=(2.*DES+RVP4+PET)=E1+(2.*DET+FVP4+DES)+E5
CHEET
       1295
SHEET
                     D2=(2.*DES+FVF4*DFT)*E2
       1297
       1298
                     D3=(2.*DES+RVP4*DET)*E3+(2.*DFT+RVP4*DES)*E5
SHEET
SHEET
                    DA = (2.*DES+RVR4*DET)*E4
F1=FF52*D1
       1299
       1300
SHEET
       1301
                     F2=EF52*D2
SHEET
       1302
                     F3:EF52*D3
SHEET
                     F4=FF52+04
       1303
SHEFT
       1304
              c
SHEFT
                     F11=EFS3*D1*D1+EFS2*((2.*DES+RVP4*DET)*E6+(2.*DET+RVP4*DES)*E12
       1305
       1305
                    1+(2.*E1+FVP4*E5 )*E1+(2.*E5+PVP4*E1)*E5)
                     F12=F53*01*02*EF52*((2.*D55+QVA*DET)*E8+(2.*E1+PVP4*E5)*E2)
F13=EF53*D1*02*EF52*((2.*D55+RVP4*DET)*F7+(2.*E3+PVP4*E5)*E1
SHEET
       1 307
SHEET
       1308
SHEET
                    1+(2.*E5+RVP4*E3)*E*+(2.*DET+PVF4*FE5)*E12)
       1309
       1310
                     F14=FF53*D1*D44EF52*((2.*DE5+PVP4*DET)*E9+(2.*E1+RVPA*E5)*E4)
F22=EF53*D2*D2+EF52*((2.*DE5+RVP4*DET)*E11+2.*E2*E2)
SHEET
SHEFT
SHEET
                     F23=EF53*D2*D3+EF52*((2.*DES+RVF4*DET)*E9+(2.*E3+RVP4*E5)*E2)
                     F24=EF93*D2*D4+EF92*(-(2.*DE9+PVP4*DET)*511+2.*E4*E2)
SHEET
       1313
SHEET
                     F33=EFS3*D3*D3+EFS2*((2.*DES+EVPA*DET)*E6+(2.*E3+EVP4*E5)*E3+(
SHEET
       1315
                    12. *55+2VP4*E3)*E5+( 2. *DET+RVP4*DES) *E12)
                     F34=EFS3*D3*D4+EFS2*((2.*DES+FVP4*DET)*E10+(2.*E3+RVP4*E5)*E4)
SHEET
       1316
SHEET
       1317
                     F44=EF53*D4*D4+EF52*((2.*DES+FVP4*DET)*E11+2.*E4*E4)
SHEET
       1319
SHEET
       1319
       1320
SHEET
                     P(1,1)=((S1+S2*EF51)*F11+52*F1*F11*FC*THKL
CHEET
       1321
                     P(1.2)=((S1+52*EFS1)*F12+52*F24F1)*FC*THKL
SHEET
                     2(1.4)=((S1+52*5F51)*F13+S2*F1*F3)*FC**HKL
       1322
SHEET
       1323
                     D(1.5)=((S1+52*FFS1)*F14+S2*F1*F4)*CC*THKL
SHEET
       1 324
                     P(2.2)=((S1+S2*FFS1)*F22+S2*F2*F2)*FC*THKL
                     D(2.4)=((S1+52##F51)#F23+52#F2#F3)#FC*THKL
SHEET
       1325
SHEET
                     P(2.5)=((51+52*EFS1)*F24+52*F2*F4)*PC*THKL
                     D(4,4)=((51+52*FF51)*F33+52*F3*F3)*C*THKL
SHEET
       1327
                     0(4,5)=((51+52#EF51)#F34+52#F3#F4)#FC#THFL
       1322
SHEET
       1326
                     0(5.5)=((S1+52*EF511*F44+52*F4*F4)*FC*THKL
SHEET
       1330
                     P(2.11=P(1.2)
                     F(4.1)=P(1.4)
SHEET
       1331
SHEET
       1 332
                     P(4,2)=P(2,4)
SHEET
                     P(3.1)=P(1.5)
       1333
SHEET
       1334
                     P(5.2)=P(2.5)
SHEET
       1335
                     P(5.4)=P(4.5)
SHEET
       1335
SHEET
       1337
SHEET
       1338
                     H(11=-(S1+52*EF 51)#F1#2C*THKL
SHEET
                     H(2) =- (51+52*EF51)*F2*CC+THKL
       1339
```

```
SHEET 1340
                      H(4)=-(51+52#F51)##3#6C#THKL
CHEET
       1341
                      H(51=-(S1+S2+FFS1)*F4+FC#THKL
SHEET
       1342
       1343
SHEET
                   71 CONTINUE
SHEET
       1345
                      DETLON
                      ENC
SHEET 1346
                      SUSPOUTINE CONDENTA, P. NEO, MAAND, N. U)
SHEET
       1349
       1350
               C PERFORM THE MATRIX CONDENSATION WHEN THE VALUE OF A COMPONENT C X IN AXER IS SPECIFIED EQUAL TO PERC
SHEET
SHEET
       1 152
SHEET
       1353
SHEET
       1 354
CHEET
        1355
                      DIMENSION BINEQUALNEGAL
SHEET
               C
       1357
SHETT
                      DO 250 M=2.MBAND
                                                                                                  MEN
SHEST
                                                                                                  VCL
SHEET
       1359
                      IF(K) 235,235,230
                                                                                                  -
                 230 9(K)=9(K)-4(K,M)*U
CHEET
        1350
                                                                                                  MOL
SHEET
       1361
                     A(K. 41=0.0
                                                                                                  MCC
SHEET
       1362
                 235 K=N+M-1
                                                                                                  W OF
SHEET
       1363
                      1F(NFO-K) 250.240.240
                                                                                                  MCC
                240 B(K)=B(K)-A(N,M)#U
SHEET
       1 364
                                                                                                  MOC
SHEET
        1365
                     4(N,M)=0.0
                                                                                                  401
                 250 CONTINUE
SHEET
       1366
                                                                                                  MEL
                     A(N,1)=1.0
SHEET
       1357
                                                                                                  400
       1368
SHEET
                      914)=U
                                                                                                  MCD
                      RE TURN
                                                                                                  MOP
SHEET
SHEET
       1370
SHEET
       1371
                      END
                                                                                                  400
SHEET
                      SURROUTINE MOCIFY(CODE, A.B. ALPHA, GAMMA, ETA, AUMNE, AFG. MPANE, FRNECE)
       1373
SHEET
       1374
                      DIMENSION CODE(1).A(NEC. 1). R(1). ALPHA(1). GAMMA(1).ETA(1).FRNFCE(1)
                      00 121 1=1. NLWND
SHEET
       1775
       1376
                      1L=3#1
                      17=1L-1
19=17-1
SHEET
        1 377
SHEET
       1379
                      C=CCDE(1)
                      IF (C.50. 1.) GG TO 101
IF (C.50. 2.) GC TO 102
IF (C.50. 3.) GC TO 103
SHEET
       1 380
SHEET
       1391
SHEFT
       1393
SHEET
               C
SHEET
                      CALL CONDENTA.P. NEO. MEAND. IL.O. 1
SHEET
       1385
                      CONSTATALPHA(I)
SHEET
       1386
                      CONSTG = GAMMA(1)
                      1F(C .EQ. 4160 TO 104
GC TO 121
SHEET
       1388
SHEET
       1380
SHEET
SHEET
       1391
                 101 CONTINUE
                      CALL CONDEN(A.B.NEG. MBAND. 18.0.)
CALL CONDEN(A.B.NEO. MBAND. IL.C.)
SHEET
       1392
SHEFT
       1393
SHEET
       1394
                      GC TO 121
SHEET
       1395
               C
SHEET
                 102 CONTINUE
SHEET
       1397
                      CALL CONDEN(A.R.NEG. WRANG. 12.0.)
CALL CONDEN(A.R.NEG. WRAND. IL.C.)
SHEET
       1398
SHEET
                      P(IF)=P(IF)+FENFCE(I)
SHEET
       1400
                      GO TO 121
SHEET
       1401
SHEFT
        1402
                 103 CONTINUE
                      CALL CONDEN(A.P.NEO. MAND. IR.C.)
SHEET
       1407
SHEET
                      CALL CONCENTA. P. NEG. MPAND, 17.0.1
       1404
                      CALL CONDEN(A.B.NEG. WRAND. IL.O.)
SHEET
       1405
SHEET
       1406
SHEET
       1407
                 104 CONTINUE
CALL RCMIX(A.E.NEG, MRAND, CONSTA, CONSTE, CONSTG, IP, IZ)
SHEET
       1408
SHEET
       1409
SHEET
        1410
                 121 CONTINUE
SHEET
       1411
SHEET
        1412
               c
SHEET
       1413
                      PETLAN
SHEET
                      ENC
       1414
```

0

10

11

12

13

15

```
SHEET 1416
                   SURROUTINE TELAINN. MM. A)
                   DIMENSION A(NN.1)
SHEET
       1419
             SHEET
      1419
             SHEET
       1420
SHEET
       1421
SHEET
      1422
SHEET
      1423
SHEET
             100 N=N+1
[F(N-20.NN) FF TURN
SHEET
       1425
SHEET
      1426
SHEET
      1427
                   IF(A(N.1).NE.O.) CO TO 150
SHEET
      1428
                   GO TO 100
             c
SHEET
       1430
                   MR = MTNO( MM , NN-N+1)
SHEET
       1431
SHEET
      1432
SHEET
      1433
                   00 250 L=2.MP
SHEET
      1474
                   1=1+1
SHEET
       1475
                   C=4(N.L)/4(N.1)
                   1F(C.E0.0.0)GD TO 260
      1436
SHEET
      1437
      1438
SHEET
             C
                   DC 250 K=L.MP
SHEET
      1440
                   J=J+1
CHEET
      1401
             250 A(I.J)=A(I.J)-C+A(N.K)
SHEET
      1442
SHEET
             260 CENTINUE
     1443
      1444
            C
SHEET
     1445
                   GO TO 100
             c
SHEET
      1447
             c
SHEET 1448
                   ENC
SHEET
      1450
                   SURFOUTINE BACKS(NN. MK.A.P)
     1451
SHEET
      1452
             C PACY SURSTITUTION FOR SQUITION OF MANDED SYMPETRIC MATELY
SHEET
      1453
SHEET
      1454
             c
SHEET
      14=5
SHEET
      1455
SHEET
      1457
                  DIMENSION A(1).E(1)
            C
SHEET
     1458
SHEET
      1459
                   ****-1
SHEET 1460
SHEET 1461
             N=0
270 N=N+1
SHEET
      1442
                   C=P(N)
                   IF(A(N) .NE .O.C)B(N)=P(N)/A(N)
SHEET
      1463
SHEET
                   IF (N.EG. NNIGO TO 300
SHEET
      1455
                   TI =N+1
SHEET
                   IH=WING (NN. N+WWW)
                   M=N
DD 285 I=IL.IF
M=M+NN
      1467
SHEET
SHEET
SHEET
      1469
      1470
             295 B(1)=B(1)-A(4)*C
SHEFT
                   GC TO 270
            c
SHEET
      1472
SHEET
      1473
SHEET
      1474
              300
                  IL=N
      1475
                   N=N-1
SHEET
      1476
                   IF (N.EQ.O) PETURN
      1477
SHEET
                   IH=WINO(AN, N+WWW)
SHEET
                   MEN
SHEET
      1479
            c
                   DO 400 I=IL.I+
      1490
                  N=M+NN
R(N)=R(N)-A(N)*E(I)
SHEET
SHEET
      1492
             400
SHEET
      1443
                   GC . TC 300
SHEET 1484
SHEET 1485
SHEET 1486
             č
                   ENT
SHEET 1498
SHEET 1499
                   SUBPOUTINE HARD(EDS.Y)
SHEET 1499
SHEET 1490
                   COMMON/ MATERL /YYVAL . PPESTN. EE XENT , OFE STE
             C WORKHARDENING CHARACTERISTIC CUPVE
SHEET 1491
```

```
SHEET
       1493
SHEET
       1494
SHEET
                     YVALUE =YYVAL
SHEFT
       1406
                     EXPNT=EF XPNT
SHEET
       1497
                     Y=YVALUF*(PRESTN+FFS)**EXDMT+FFFFTS
SHEET
                     RETLEN
       1498
SHEET
                     END
       1501
                     SURROUTINE HARD 2(EFS. Y)
SHEET
       1502
                     COMMON/MATERL/YYVAL . PRESTN. SE XENT . PRESTS
       1503
SHEET
       1504
       1505
                     COMPUTE NOFK PARCENING RATE
              C*********************************
SHEET
       1506
SHEET
       1507
              C
       1504
SHEET
       1509
                     YVALUE = YVVAL
                     Y=EXPNT*YVALUE*(PEFSTN4EPS)**(FXCNT-1.)
       1510
SHEFT
SHEET
                     RETURN
SHEET 1514
                     SUPPOUTINE ACMIXIA. P. NEO. MBAND . CONSTA. CONSTE. CONSTE. 17.121
SHEET 1515
SHEET 1516
                     DIMENSION A (NEO. 1). B(1)
       1517
SHEET
       1518
              THIS SUPPOUTINE MANCLES THE MIXED ROUNDARY CONDITION
SHEET
       1519
SHEET
       1520
SHEET
       1521
                     A(17,1)=A(17,1)+2.*A(1F.1K)/CCNSTA+A(1F.1)/CCNSTA/CCNSTA
R(17)=R(17)+R(1F)/CCNSTA-CONSTGR(A(1F.1)/CCNSTA+A(1F.1K))
SHEET
       1522
SHEET
       1523
       1524
                     B(12)=B(12)+CCNSTF
SHEET
       1525
                     A( IR . 1 ) = 1 . 0
CHEET
       1526
                     A(15,1K1=0.0
SHEET
       1527
                     B(IR) =0.0
SHEET
       1425
       1530
                     00 300 M=2.MBAND
SHEET
       1531
SHEET
                     K=17-4+1
SHEET
       1532
                     IF . K .LT. 11GC TO 300
                     15(K .50. 18)60 TO 300
15(K .6T. 15)60 TO 350
SHEET
       1533
       1534
SHEFT
SHEET
                     MM= 18-K+1
SHEET
       1536
                     AIK . M ) = A(K, M) + A(K, WM) / CONSTA
SHEET
       1537
                     G(K)=G(K)-A(K,NM)*CCNSTG
SHEET
       153A
                     A(K,MM)=0.
GC TO 300
CHEET
       1539
SHEET
       1540
                 350 CONTINUE
SHEET
       1541
SHEET
                     WM=K-! 9+1
SHEET
       1543
                     A(K,M)=A(K,M)+A(IF,MM)/CONSTA
                     B(KI=B(K)-A(IF, MM)+CONSTE
CHEFT
       1544
SHEET
                     A(19.MM)=C.
       1545
       1546
SHEET
                300 CONTINUE
SHEET
       1547
       1548
SHEET
                     MB 1 =MBAND- 1
SHEET
                     DC 200 M=2.ME1
       1550
SHEET
       1551
                     A(17, W)=A(12, W)+A(10, WW)/CONSTA
SHEET
       1552
                     177=19+W
SHEET
       1553
                     P(177)=P(1721-A(IP,NN)*CONSTG
SHEET
       1554
                200 A(IF, MM)=0.0
       1555
1556
SHEET
              c
SHEET
SHEET
       1557
                     PETUPN
SHEET
                     END
```

REFERENCES

- Lee, C. H., and Kobayashi, S., "New Solutions to Rigid-plastic Deformation Problems Using a Matrix Method," <u>Trans. ASME</u>, J. of Engrg. for Ind., Vol. 95, p. 865, 1973.
- Lee, C. H., and Kobayashi, S., "Deformation Mechanics and Workability in Upsetting Solid Circular Cylinders," <u>Proc. North Amer. Metalworking</u> <u>Res. Conf.</u>, Hamilton, Canada, Vol. 1, p. 185, May 1973.
- Shah, S. N., Lee, C. H., and Kobayashi, S., "Compression of Tall, Circular, Solid Cylinders Between Parallel Flat Dies," <u>Proc. Int. Conf. Prod. Engr.</u>, Tokyo, p. 295, 1974.
- 4. Shah, S. N., and Kobayashi, S., "Rigid-plastic Analysis of Cold Heating by the Matrix Method," Proc. 15th Int. MTDR Conf., p. 603, 1974.
- 5. Lee, S. H., and Kobayashi, S., "Rigid-plastic Analysis of Bore Expanding and Flange Drawing with Anisotropic Sheet Metals by Matrix Method," Proc. 15th Int. MTDR Conf., p. 561, 1974.
- 6. Shah, S. N., and Kobayashi, S., "A Theory on Metal Flow in Axisymmetric Piercing and Extrusion," J. Prod. Engrg., Vol. 1, p. 73, 1977.
- 7. Chen, C. C., Oh, S. I., and Kobayashi, S., "Ductile Fracture in Axisymmetric Extrusion and Drawing," USAF Technical Report AFML-TR-77-96, June 1977.
- 8. Hill, R., "A Variational Principle of Maximum Plastic Work in Classical Plasticity," Quart. J. Mech. Appl. Math. 1, p. 18, 1948.
- 9. Prager, W., and Hodge, P. G. Jr., Theory of Perfectly Plastic Solids, Dover Publications, 1951.
- 10. Hill, R., "On the Problem of Uniqueness in the Theory of a Rigid-plastic Solid," Part II, J. Mech. Phys. Solids, Vol. 5, p. 1, 1956.
- 11. Miles, P., "Bifurcation in Rigid-plastic Materials Under Spherically Symmetric Loading Conditions," J. Mech. Phys. Solids, Vol. 17, p. 303, 1969.
- Chakrabarty, J., "On Uniqueness and Stability in Rigid-plastic Solids," Int. J. Mech. Sci., Vol. 11, p. 723, 1969.
- 13. Hill, R., Mathematical Theory of Plasticity, Oxford Press, 1950.
- Hill, R., "Eigenmodel Deformations in Elastic/Plastic Continua,"
 J. Mech. Phys. Solids, Vol. 15, p. 371, 1967.

- 15. Malvern, L., Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, 1969.
- Hill, R., "On the Problem of Uniqueness in the Theory of a Rigidplastic Solid," Part III, J. Mech. Phys. Solids, Vol. 5, p. 133, 1957.
- 17. Hill, R., "On the Problem of Uniqueness in the Theory of a Rigid-plastic Solid," Part IV, J. Mech. Phys. Solids, Vol. 5, p. 302, 1957.
- 18. Hill, R., "Stability of Rigid-plastic Solids," J. Mech. Phys. Solids, Vol. 6, p. 1, 1957.
- 19. Strang, G., and Fox, G. J., An Analysis of the Finite-element Method, Prentice-Hall, 1973.
- 20. Zienkiewicz, O. C., The Finite-element Method, McGraw-Hill, 1971.
- 21. Odell, E. I., and Clausen, W. E., "Numerical Solution of a Deep Drawing Problem," ASME Paper 76-WA/prod-3, 1977.
- 22. Dahlquist, G., Numerical Methods, Prentice-Hall, 1974.
- 23. Hill, R., "A Theory of the Plastic Bulging of a Metal Diaphragm by Lateral Pressure," Phil. Mag., Vol. 41, p. 1133, 1950.
- 24. Woo, D. M., "The Analysis of Axisymmetric Forming of Sheet Metal and the Hydrostatic Bulging Process," Int. J. Mech. Sci., Vol. 6, p. 303, 1964.
- 25. Yamada, Y., and Yokouchi, Y., "Elastic-plastic Analysis of the Hydraulic Bulge Test by the Membrane Theory," Manuf. Res., Vol. 21, p. 26, 1969 (in Japanese).
- 26. Wang, N. M., and Shammamy, M. R., "On the Plastic Bulging of a Circular Diaphragm by Hydrostatic Pressure," J. Mech. Phys. Solids, Vol. 17, p. 43, 1969.
- 27. Shammamy, M. M., and Wang, N. M., "Comparison of Experimental and Theoretical Results for the Hydrostatic Bulging of Circular Sheets," SESA Fall Meeting, 1970.
- 28. Iseki, H., Jimma, T., and Murota, T., "Finite-element Method of Analysis of the Hydrostatic Bulging of a Sheet Metal," Bull. JSME, Vol. 17, 1974.
- 29. Wang, N. M., "A Variational Method for Problems of Large Plastic Deformation of Metal Sheets," General Motors Report, 1970.
- Budiansky, A. B., "Nonlinear Shell Theory," <u>J. of Appl. Mech.</u>, Vol. 35, p. 393, 1968.
- 31. Mellor, P. B., "Stretch Forming Under Fluid Pressure," J. Mech. Phys. Solids, Vol. 5, p. 41, 1956.

- 32. Loxley, E. M., and Freeman, P., "Some Lubrication Effects in Deep Drawing Operations," J. of Inst. Petr., Vol. 40, p. 299, 1954.
- 33. Keeler, S. P., and Backofen, W. A., "Plastic Instability and Fracture in Sheets Stretched over Rigid Punches," <u>Trans. ASME</u>, Vol. 56, p. 25, 1963.
- 34. Swift, H. W., "Plastic Instability Under Plane Stress," J. Mech. Phys. Solids, Vol. 1, p. 1, 1952.
- 35. Hill, R., "On Discontinuous Plastic States with Special Reference to Localized Necking in Thin Sheets," J. Mech. Phys. Solids, Vol. 1, p. 19, 1952.
- 36. Marciniak, Z., and Kuczynski, K., "Limit Strains in the Processes of Stretch Forming Sheet Metal," Int. J. Mech. Sci., Vol. 9, p. 609, 1967.
- 37. Marciniak, Z., Kuczynski, K., and Pokara, T., "Influence of the Plastic Properties of a Material on the Forming Limit Diagram for Sheet Metal in Tension," Int. J. Mech. Sci., Vol. 15, p. 789, 1973.
- 38. Gosh, A. K., and Hecker, S. S., "Failure in Thin Sheets Stretched over Rigid Punches," General Motors Report, 1974.
- 39. Kaftanoglu, B., and Alexander, J. M., 'On Quasistatic Axisymmetrical Stretch Forming,' Int. J. Mech. Sci., Vol. 12, p. 1065, 1970.
- 40. Chakrabarty, J., "A Theory of Stretch Forming over Hemispherical Punch Heads," Int. J. Mech. Sci., Vol. 12, p. 315, 1970.
- 41. Woo, D. M., "The Stretch-forming Test," The Engineer, Vol. 220, p. 876, 1965.
- 42. Wang, N. M., and Gordon, W. J., "On the Stretching of a Circular Sheet by a Hemispherical Punch," General Motors Report, 1968.
- 43. Wang, N. M., "Large Plastic Deformation of a Circular Sheet Caused by Punch Stretching," General Motors Report, 1969, and J. Appl. Mech., p. 431, 1970.
- 44. Wifi, A. S., "An Incremental Complete Solution of the Stretch-forming and Deep Drawing of a Circular Blank Using a Hemispherical Punch," Int. J. Mech. Sci., Vol. 18, p. 23, 1976.
- 45. Lee, C. H., Masaki, S., and Kobayashi, S., "Analysis of Ball Indentation," Int. J. Mech. Sci., Vol. 14, p. 417, 1972.
- 46. Jarvinen, P. A., "Representation of High Temperature Plastic Behavior of Austenitic and Ferritic Stainless Steel by Empirical Equations," Scand. J. Metallurgy, Vol. 6, 1977.
- 47. Voce, E., J. of Inst. of Metals, Vol. 74, pp. 537-562, 1948.
- 48. Gegel, H. L., Private communication, January 1978.

- 49. Chakrabarty I and Mellor, P. B., "A New Approach for Predicting the Limiting Drawing Ratio," IDDRG 5th Biennial Congress, September 30, 1968, la Metallurgia Italiana, p. 791, 1968.
- 50. El-Sabaie, M. G., and Mellor, P. B., "Plastic Instability Conditions in the Deep Drawing of a Circular Blank of Sheet Metal," <u>Int. J. Mech. Sci.</u>, Vol. 4, p. 535, 1972.
- 51. Budiansky, B., and Wang, N. M., "On the Swift Cup Test," J. Mech. Phys. Solids, Vol. 14, p. 357, 1966.
- 52. Chung, S. Y., and Swift, H. W., "Cup Drawing from a Flat Blank," Proc. Instr. Mech. Engrs., Vol. 165, p. 199, 1951.
- 53. Woo, D. M., "Analysis of the Cup Drawing Processes," J. Mech. Engrs., Vol. 6, p. 116, 1964.
- 54. Lee, P. K., Choi, C. Y., and Hsu, T. C., "Effect of Drawing on Formability in Axisymmetrical Sheet Metal Forming," J. of Eng. Ind., p. 925, 1973.
- 55. Hsu, T. C., Dowle, W. R., Choi, C. Y., and Lee, P. K., "Strain Histories and Strain Distributions in a Cup Drawing Operation," J. of Eng. Ind., p. 461, 1971.
- 56. El-Sebaie, M. G., and Mellor, P. B., "Double Operation Deep Drawing," Int. J. Mech. Sci., Vol. 15, p. 945, 1973.
- 57. Chiang, D. C., and Kobayashi, Shiro, "The Effect of Anisotropy and Workhardening Characteristics on the Stress and Strain Distribution in Deep Drawing," ASME paper 66-prod-3, 1966.
- 58. Woo, D. M., "On the Complete Solution of the Deep Drawing Problem," Int. J. Mech. Sci., Vol. 10, p. 83, 1968.
- 59. Levy, S., Shih, C. F., Wilkinson, J. P. D., Stine, P., and McWilson, R. C., "Analysis of Sheet Metal Forming to Axisymmetric Shapes," General Electric Report No. 77CRD257, December 1977, Schenectady, New York.